WETLAND DETERMINATION DATA FORM - Alaska Region

pplicant/Owner: Alaska Energy Authority				a-Susitna Borough Sampling Date: 24-Aug-15
PRIORITION AIRSING ETICITY AUTHORITY				Sampling Point: SW15_T333_22
ivestigator(s): ERT, TXC		Landform (hill	side, terrac	e, hummocks etc.): Drainage
ocal relief (concave, convex, none): undulating		Slope: 3.5	% / 2.0	
ubregion : Interior Alaska Mountains	Lat.:			Long.: Datum: WGS84
bil Map Unit Name:				NWI classification: Upland
•		. V	No ○	
Are Vegetation	nificantly turally pro	disturbed?	Are "N (If nee	(If no, explain in Remarks.) ormal Circumstances" present? Yes ● No ○ ded, explain any answers in Remarks.) s, transects, important features, etc.
Hydrophytic Vegetation Present? Yes No				
Hydric Soil Present? Yes ○ No ●				pled Area fetland? Yes ○ No ◉
Wetland Hydrology Present? Yes ○ No ●		Wi	ithin a W	etland? Yes UNO ®
Remarks:				
	all spe		plot. Indicator Status	Dominance Test worksheet: Number of Dominant Species
1	o cover		Status	That are OBL, FACW, or FAC:1(A)
2			-	Total Number of Dominant
3				Species Across All Strata:3(B)
1				Percent of dominant Species That Are OBL, FACW, or FAC: 33.3% (A/B)
5.				
Total Cover:				Prevalence Index worksheet: Total % Cover of: Multiply by:
Sapling/Shrub Stratum 50% of Total Cover: 0	20%	of Total Cover:	0	OBL Species 0 x 1 = 0
4. Callin andalasa	77	✓	FACW	FACW Species 77 x 2 = 154
			FACW	FAC Species 1 x 3 = 3
				FACU Species 5.1 x 4 = 20.4
3. 4.	0			UPL Species 0 x 5 = 0
5.	0			Column Totals: 83.1 (A) 177.4 (B)
6.	0			
7.	0			Prevalence Index = B/A = 2.135
8.	0			Hydrophytic Vegetation Indicators:
9.	0			☐ Dominance Test is > 50%
10	0			✓ Prevalence Index is ≤3.0
Total Cover: 50% of Total Cover: 38	<u>77</u> .5 20%	of Total Cover	:15.4	Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet)
1. Cornus canadensis	3	~	FACU	Problematic Hydrophytic Vegetation (Explain)
2. Rubus arcticus(IAM)	2	~	FACU	¹ Indicators of hydric soil and wetland hydrology must
3. Calamagrostis canadensis	1		FAC	be present, unless disturbed or problematic.
4. Spinulum annotinum	0.1		FACU	Plot size (radius, or length x width)
5				% Cover of Wetland Bryophytes 0
6				(Where applicable)
7				% Bare Ground
8.				Total Cover of Bryophytes <u>85</u>
9	0			
10Total Cover:	6.1			Hydrophytic Vegetation
ı ulai Cover:		of Total Cover:		Present? Yes • No

US Army Corps of Engineers Alaska Version 2.0

SOIL Sampling Point: SW15_T333_22

(inches) Color (mo	ist)	%	Color (m	noist)	%	Type ¹	<u>Loc</u> 2	Texture	Remarks
0-2								Fibric Organics	Oi
2-5								Hemic Organics	Oe
5-9 10YR	4/3	60	2.5Y	4/2	30	D	М	Silt Loam	AB. 10% Fe3+ conc. pores 7.5 YR 4/
9-17 10YR	4/4	95	2.5Y	4/2	5	D	PL	Loam	Bw, buried broken inclusiins of organ
									material.
									-
ype: C=Concentration. D=	=Depletion.	RM=Reduc						annel. M=Matrix	
dric Soil Indicators:				ors for Pro		4	DIIS:	7 Aladia Claud With aut	lue EV en Dedden
Histosol or Histel (A1)				ka Color Cri ka Alpine sv		-		Alaska Gleyed Without I Underlying Layer	nue 51 or Redder
Histic Epipedon (A2) Hydrogen Sulfide (A4)				ka Redox W	•	,		Other (Explain in Rema	·ks)
Thick Dark Surface (A12)								
Alaska Gleyed (A13) Alaska Redox (A14)	,			ndicator of l appropriate				mary indicator of wetland esent	hydrology,
Alaska Gleyed Pores (A1	5)		4 Give (details of co	lor chang	e in Remark	(S		
, ,	,								
strictive Layer (if present):								Undel Call Day	
								Hydric Soil Presen	t? Yes O No 💿
* *								,	
	pha-dipyrid	ol strips in	all horizon	S.				.,	
Depth (inches):	pha-dipyrid	ol strips in	all horizon	s.					
Depth (inches): marks: gative reaction to alpha, al	pha-dipyrid	ol strips in	all horizon	s.					
Depth (inches): marks: gative reaction to alpha, al	ntors:		all horizon	s.				_Secondary Inc	icators (two or more are required
Depth (inches): marks: gative reaction to alpha, al DROLOGY etland Hydrology Indicationary Indicators (any one	ntors:							Secondary Inc	licators (two or more are required lined Leaves (B9)
Depth (inches): marks: gative reaction to alpha, al DROLOGY etland Hydrology Indicationary Indicators (any one) Surface Water (A1)	ntors:		In	undation Vi		_		Secondary Inc	licators (two or more are required ined Leaves (B9) Patterns (B10)
Depth (inches): marks: gative reaction to alpha, algorithms and the second seco	ntors:		☐ In	undation Vi parsely Vege	etated Cor	_		Secondary Inc Water Sta Drainage Oxidized	licators (two or more are required ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots ((
Depth (inches): marks: gative reaction to alpha, al DROLOGY etland Hydrology Indication of the control of the	ntors:		☐ Ini ☐ Sp ☐ Ma	undation Vi parsely Vege arl Deposits	etated Cor (B15)	ncave Surfa		Secondary Inc Water Sta Drainage Oxidized Presence	licators (two or more are required lined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (G of Reduced Iron (C4)
Depth (inches): marks: pative reaction to alpha, al DROLOGY etland Hydrology Indica mary Indicators (any one Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1)	ntors:		☐ Ini ☐ Sp ☐ Ma	undation Vi parsely Vege arl Deposits ydrogen Sul	etated Cor (B15) fide Odor	ncave Surfa		Secondary Inc Water Sta Drainage Oxidized Presence Salt Depo	licators (two or more are required ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (of Reduced Iron (C4) sits (C5)
Depth (inches): marks: gative reaction to alpha, al DROLOGY etland Hydrology Indication of the second of the seco	ntors:		Ini Sp Ma	undation Vi parsely Vege arl Deposits ydrogen Sul y-Season W	etated Cor (B15) fide Odor Vater Tabl	ncave Surfa (C1) e (C2)		Secondary Inc Water Sta Drainage Oxidized Presence Salt Depo	iicators (two or more are required iined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (O of Reduced Iron (C4) sits (C5) r Stressed Plants (D1)
Depth (inches): marks: gative reaction to alpha, al DROLOGY etland Hydrology Indication of the surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3)	ntors:		Ini Sp Ma	undation Vi parsely Vege arl Deposits ydrogen Sul	etated Cor (B15) fide Odor Vater Tabl	ncave Surfa (C1) e (C2)		Secondary Inc Water Sta Drainage Oxidized Presence Salt Depo	licators (two or more are required ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (of of Reduced Iron (C4) sits (C5) r Stressed Plants (D1) nic Position (D2)
Depth (inches): marks: gative reaction to alpha, algal Mat or Crust (B4) DROLOGY etland Hydrology Indication of the second of t	ntors:		Ini Sp Ma	undation Vi parsely Vege arl Deposits ydrogen Sul y-Season W	etated Cor (B15) fide Odor Vater Tabl	ncave Surfa (C1) e (C2)		Secondary Inc Water Sta Drainage Oxidized Presence Salt Depo Stunted of Geomorp Shallow A	licators (two or more are required ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (of Reduced Iron (C4) sits (C5) or Stressed Plants (D1) nic Position (D2) quitard (D3)
Depth (inches): marks: pative reaction to alpha, algal Mat or Crust (B4) Iron Deposits (B5) marks: pative reaction to alpha, algal Mat or Crust (B4) Iron Deposits (B5)	ators: is sufficient		Ini Sp Ma	undation Vi parsely Vege arl Deposits ydrogen Sul y-Season W	etated Cor (B15) fide Odor Vater Tabl	ncave Surfa (C1) e (C2)		Secondary Inc Water Sta Drainage Oxidized Presence Salt Depo Stunted of Geomorp Shallow A	licators (two or more are required ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (of Reduced Iron (C4) sits (C5) r Stressed Plants (D1) nic Position (D2) quitard (D3) graphic Relief (D4)
Depth (inches): marks: gative reaction to alpha, algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6)	ators: is sufficient		Ini Sp Ma	undation Vi parsely Vege arl Deposits ydrogen Sul y-Season W	etated Cor (B15) fide Odor Vater Tabl	ncave Surfa (C1) e (C2)		Secondary Inc Water Sta Drainage Oxidized Presence Salt Depo Stunted of Geomorp Shallow A	licators (two or more are required ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (of Reduced Iron (C4) sits (C5) or Stressed Plants (D1) nic Position (D2) quitard (D3)
Depth (inches): marks: pative reaction to alpha, algorithms and the property of the property o	ators: is sufficient)	Ini Sp Ma	undation Vi parsely Vege arl Deposits ydrogen Sul ry-Season W ther (Explain	etated Cor (B15) fide Odor Vater Tabl n in Rema	ncave Surfa (C1) e (C2)		Secondary Inc Water Sta Drainage Oxidized Presence Salt Depo Stunted of Geomorp Shallow A	licators (two or more are required ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (of Reduced Iron (C4) sits (C5) r Stressed Plants (D1) nic Position (D2) quitard (D3) graphic Relief (D4)
Depth (inches): marks: gative reaction to alpha, al properties of the properties of	ators: is sufficient) No •	Ini Sp Ma Hy Dr	undation Vi parsely Vege arl Deposits ydrogen Sul ry-Season W ther (Explain	etated Cor (B15) fide Odor /ater Tabl n in Rema	ncave Surfa (C1) e (C2)	ce (B8)	Secondary Inc Water Sta Drainage Oxidized Presence Salt Depo Stunted of Geomorp Shallow A Microtopo	iicators (two or more are required iined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (of Reduced Iron (C4) sits (C5) r Stressed Plants (D1) nic Position (D2) quitard (D3) graphic Relief (D4) al Test (D5)
Depth (inches): marks: pative reaction to alpha, algalized Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Water Present? Surface Water Present?	Yes C	No • No • No •	Ini Sp Ma Hy Dr Ot	undation Vi parsely Vege arl Deposits ydrogen Sul ry-Season W ther (Explain epth (inches	etated Cor (B15) fide Odor Vater Tabl n in Rema	ncave Surfa (C1) e (C2)	ce (B8)	Secondary Inc Water Sta Drainage Oxidized Presence Salt Depo Stunted of Geomorp Shallow A	iicators (two or more are required iined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (of Reduced Iron (C4) sits (C5) r Stressed Plants (D1) nic Position (D2) quitard (D3) graphic Relief (D4) al Test (D5)
Depth (inches): marks: gative reaction to alpha, al property etland Hydrology Indication of the second of the se	ators: is sufficient	No • No • No •	Ini Sp Ma Hy Dr Ot	undation Vi parsely Vege arl Deposits ydrogen Sul ry-Season W ther (Explain	etated Cor (B15) fide Odor Vater Tabl n in Rema	ncave Surfa (C1) e (C2)	ce (B8)	Secondary Inc Water Sta Drainage Oxidized Presence Salt Depo Stunted of Geomorp Shallow A Microtopo	iicators (two or more are required iined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (of Reduced Iron (C4) sits (C5) r Stressed Plants (D1) nic Position (D2) quitard (D3) graphic Relief (D4) al Test (D5)
Depth (inches): marks: gative reaction to alpha, al //DROLOGY etland Hydrology Indicatimary Indicators (any one Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) eld Observations: urface Water Present? //ater Table Present? aturation Present?	Yes Yes Yes	No O No O No O No O	Ini Sp Ma Hy Dr Ot	undation Vi parsely Vege arl Deposits ydrogen Sul ry-Season W ther (Explain epth (inchese epth (inchese epth (inchese	etated Cor (B15) fide Odor /ater Tabl n in Rema s):	(C1) (C2) e (C2) rks)	Wetla	Secondary Inc Water Sta Drainage Oxidized Presence Salt Depo Stunted of Geomorp Shallow A Microtopo	iicators (two or more are required iined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (of Reduced Iron (C4) sits (C5) r Stressed Plants (D1) nic Position (D2) quitard (D3) graphic Relief (D4) al Test (D5)
Depth (inches): marks: gative reaction to alpha, al DROLOGY etland Hydrology Indication imary Indicators (any one) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) eld Observations: urface Water Present? //ater Table Present? aturation Present? includes capillary fringe)	Yes Yes Yes	No O No O No O No O	Ini Sp Ma Hy Dr Ot	undation Vi parsely Vege arl Deposits ydrogen Sul ry-Season W ther (Explain epth (inchese epth (inchese epth (inchese	etated Cor (B15) fide Odor /ater Tabl n in Rema s):	(C1) (C2) e (C2) rks)	Wetla	Secondary Inc Water Sta Drainage Oxidized Presence Salt Depo Stunted of Geomorp Shallow A Microtopo	iicators (two or more are required inned Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (of Reduced Iron (C4) sits (C5) r Stressed Plants (D1) nic Position (D2) quitard (D3) graphic Relief (D4) al Test (D5)

U.S. Army Corps of Engineers Alaska Version 2.0