WETLAND DETERMINATION DATA FORM - Alaska Region

Project/	Site: Susitna-Watana Hydroelectric Project	В	orough/City:	Denali Bo	orough Sampling Date: 03-Aug-13
Applica	nt/Owner: Alaska Energy Authority				Sampling Point: SW13_T194_07
	ator(s): SLI, EAC		Landform (hil	lside, terrac	ce, hummocks etc.): Kettle
_	elief (concave, convex, none): concave		Slope:		7 ° Elevation: 826
		Lat:	63.35348820		
_	on : Interior Alaska Mountains	Lat	03.33340020	00	
	o Unit Name:		- 14	<u> </u>	NWI classification: PEM1F
Are Vo		significantly naturally pr	y disturbed? oblematic?	Are "N (If nee	lormal Circumstances" present? Yes ● No ○ eded, explain any answers in Remarks.)
	Hydrophytic Vegetation Present? Yes 🍑 No 🤇		lo	the Com	unlad Araa
	Hydric Soil Present? Yes ● No 🤇)			ıpled Area /etland? Yes ◉ No ◯
	Wetland Hydrology Present? Yes ● No C		ļ.	ithin a W	onaria i
	rks: narrow hgwsl fringe of small pond, believe this is TATION -Use scientific names of plants. Li				down to polid illinge.
		Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree	Stratum	% Cover	Species?	Status	Number of Dominant Species That are OBL, FACW, or FAC: 1 (A)
1.		0			Total Number of Dominant
2.		0_			Species Across All Strata:1(B)
3.		0_			Percent of dominant Species
4.		0			That Are OBL, FACW, or FAC: 100.0% (A/B)
5.		0			Prevalence Index worksheet:
	Total Cover	:0			Total % Cover of: Multiply by:
Sapl	ing/Shrub Stratum 50% of Total Cover:	0 20%	of Total Cover	:0	OBL Species 80 x 1 = 80
1.		0			FACW Species 0 x 2 = 0
•					FAC Species 0.2 x 3 = 0.600
•		•			FACU Species 0 x 4 = 0
4.					UPL Species 0 x 5 = 0
5.					
6.					Column Totals: <u>80.2</u> (A) <u>80.60</u> (B)
7.		0			Prevalence Index = B/A = 1.005
					Hydrophytic Vegetation Indicators:
9.					✓ Dominance Test is > 50%
-					✓ Prevalence Index is ≤3.0
10.	Total Cover	: 0			
Herl	Stratum_ 50% of Total Cover:		of Total Cove	r: 0	Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet)
	Carex aquatilis	80	✓	OBL	Problematic Hydrophytic Vegetation ¹ (Explain)
	Calamagrostis canadensis	0.1		FAC	¹ Indicators of hydric soil and wetland hydrology must
	Equisetum arvense	0.1		FAC	be present, unless disturbed or problematic.
	40.000				
					Plot size (radius, or length x width) 2x5m
					% Cover of Wetland Bryophytes (Where applicable)
		•			% Bare Ground
/					Total Cover of Bryophytes
					Total cover of bryophytes
8.		0			
8. 9.		0			Hydronhytic
8. 9.					Hydrophytic Vegetation
8. 9.		80.2	of Total Cover	: 16.04	Hydrophytic Vegetation Present? Yes No

US Army Corps of Engineers Alaska Version 2.0

SOIL Sampling Point: SW13_T194_07

	ion: (Describe to	the depth nee	ded to documer	nt the indicat	or or confirm the		cators)		
Depth		Matrix			Redox Fea		2	- -	
(inches)	Color (mo			Color (mois	t) <u>%</u>	Type ¹	<u>Loc</u> 2	Texture Fibric Organics	Remarks
0-6	7.5YR	2.5/1	100					Fibric Organics	
6-12	7.5YR	3/1	80	10G	4/1 20	D	PL	Loamy Coarse Sand	
				-					
¹Type: C=Cor	ncentration. D=	-Depletion. I	RM=Reduced	Matrix ² L	_ocation: PL=P	ore Lining. RC	C=Root Cha	nnel. M=Matrix	
Hydric Soil I	ndicators:		I	ndicators	for Problema	ntic Hydric S	oils: ³		
Histosol or	r Histel (A1)			Alaska (Color Change (T	ΓA4) ⁴		Alaska Gleyed Without Hu	e 5Y or Redder
Histic Epip	edon (A2)			Alaska A	Alpine swales (T	TA5)		Underlying Layer	
Hydrogen	Sulfide (A4)			Alaska F	Redox With 2.5\	Y Hue		Other (Explain in Remarks	5)
Thick Dark	Surface (A12))		3 0 : :-					advala av
Alaska Gle	eyed (A13)				ator of nydropr propriate landsc			nary indicator of wetland hy esent	drology,
Alaska Red	. ,			4 Givo dota	ils of color char	nge in Demarl			
✓ Alaska Gle	yed Pores (A1	5)		· Give deta	iis oi coloi cilai	nge in Keman	· ·		
Restrictive Laye	er (if present):								
Type:								Hydric Soil Present?	Yes No
Depth (inch	nes):								
Remarks:									
HYDROLO	GY								
Wetland Hydi		tors:							
Primary Indica	tors (any one							Secondary Indic	ators (two or more are required)
Surface W	/ater (A1)	s sufficient)							ators (two or more are required)
		is sufficient)		Inund	ation Visible on	ı Aerial Image	ry (B7)	Water Stair	
✓ High Wate	er Table (A2)	i <u>s sufficient)</u>			ation Visible on	_		Water Stair Drainage Pa	ed Leaves (B9)
✓ High Wate ✓ Saturation	` ,	is sufficient)		Sparse		_		Water Stair Drainage Pa	ed Leaves (B9) atterns (B10)
	n (A3)	is sufficient <u>)</u>		Sparse	ely Vegetated C	Concave Surfa		Water Stair Drainage Pa	ed Leaves (B9) atterns (B10) aizospheres along Living Roots (C3) Reduced Iron (C4)
Saturation Water Ma	n (A3)	is sufficient)		Sparse Marl D Hydro	ely Vegetated C Deposits (B15)	Concave Surfactor (C1)		Water Stair Drainage Pa Oxidized Rh Presence of Salt Deposi	ed Leaves (B9) atterns (B10) aizospheres along Living Roots (C3) Reduced Iron (C4)
Saturation Water Ma	n (A3) rks (B1) Deposits (B2)	is sufficient)		Sparse Marl D Hydro Dry-Se	ely Vegetated C Deposits (B15) Igen Sulfide Odo	Concave Surfactor (C1) able (C2)		Water Stair Drainage Pa Oxidized Rh Presence of Salt Deposi Stunted or	ned Leaves (B9) atterns (B10) hizospheres along Living Roots (C3) Reduced Iron (C4) ts (C5)
Saturation Water Ma Sediment Drift Depo	rks (B1) Deposits (B2) osits (B3) or Crust (B4)	is sufficient)		Sparse Marl D Hydro Dry-Se	ely Vegetated C Deposits (B15) gen Sulfide Odo eason Water Ta	Concave Surfactor (C1) able (C2)		Water Stain Drainage Pa Oxidized Rh Presence of Salt Deposi Stunted or Geomorphi Shallow Aqı	ed Leaves (B9) atterns (B10) aizospheres along Living Roots (C3) Reduced Iron (C4) ats (C5) Stressed Plants (D1) a Position (D2) aitard (D3)
Saturatior Water Ma Sediment Drift Depo Algal Mat Iron Depo	n (A3) rks (B1) Deposits (B2) osits (B3) or Crust (B4) osits (B5)			Sparse Marl D Hydro Dry-Se	ely Vegetated C Deposits (B15) gen Sulfide Odo eason Water Ta	Concave Surfactor (C1) able (C2)		Water Stain Drainage Pa Oxidized Rh Presence of Salt Deposi Stunted or Geomorphic Shallow Aqı Microtopog	ed Leaves (B9) etterns (B10) eizospheres along Living Roots (C3) F Reduced Iron (C4) ts (C5) Stressed Plants (D1) F Position (D2) eitard (D3) raphic Relief (D4)
Saturatior Water Ma Sediment Drift Depo Algal Mat Iron Depo Surface So	n (A3) rks (B1) Deposits (B2) osits (B3) or Crust (B4) osits (B5) oil Cracks (B6)			Sparse Marl D Hydro Dry-Se	ely Vegetated C Deposits (B15) gen Sulfide Odo eason Water Ta	Concave Surfactor (C1) able (C2)		Water Stain Drainage Pa Oxidized Rh Presence of Salt Deposi Stunted or Geomorphi Shallow Aqı	ted Leaves (B9) atterns (B10) aizospheres along Living Roots (C3) E Reduced Iron (C4) ats (C5) Stressed Plants (D1) at Position (D2) aitard (D3) araphic Relief (D4)
Saturation Water Ma Sediment Drift Depo Algal Mat Iron Depo Surface So Field Observa	n (A3) rks (B1) Deposits (B2) osits (B3) or Crust (B4) osits (B5) oil Cracks (B6) ations:			Sparse Marl D Hydro Dry-Se Other	ely Vegetated C Deposits (B15) Igen Sulfide Odd eason Water Ta (Explain in Ren	Concave Surfactor (C1) able (C2)		Water Stain Drainage Pa Oxidized Rh Presence of Salt Deposi Stunted or Geomorphic Shallow Aqı Microtopog	ed Leaves (B9) etterns (B10) eizospheres along Living Roots (C3) F Reduced Iron (C4) ts (C5) Stressed Plants (D1) F Position (D2) eitard (D3) raphic Relief (D4)
Saturatior Water Ma Sediment Drift Depo Algal Mat Iron Depo Surface So	n (A3) rks (B1) Deposits (B2) osits (B3) or Crust (B4) osits (B5) oil Cracks (B6) ations:	Yes 〇		Sparse Marl D Hydro Dry-Se Other	ely Vegetated C Deposits (B15) gen Sulfide Odo eason Water Ta	Concave Surfactor (C1) able (C2)	ce (B8)	Water Stair □ Drainage Pa □ Oxidized Rh □ Presence of □ Salt Deposi □ Stunted or □ Geomorphi □ Shallow Aqı □ Microtopog □ FAC-neutral	ned Leaves (B9) atterns (B10) hizospheres along Living Roots (C3) F Reduced Iron (C4) ts (C5) Stressed Plants (D1) F Position (D2) Litard (D3) Taphic Relief (D4) Test (D5)
Saturation Water Ma Sediment Drift Depo Algal Mat Iron Depo Surface So Field Observa	n (A3) rks (B1) Deposits (B2) osits (B3) or Crust (B4) osits (B5) oil Cracks (B6) ations: r Present?			Sparse Marl E Hydro Dry-Se Other	ely Vegetated C Deposits (B15) Igen Sulfide Odd eason Water Ta (Explain in Ren	Concave Surfactor (C1) able (C2)	ce (B8)	Water Stain Drainage Pa Oxidized Rh Presence of Salt Deposi Stunted or Geomorphic Shallow Aqı Microtopog	ned Leaves (B9) atterns (B10) hizospheres along Living Roots (C3) F Reduced Iron (C4) ts (C5) Stressed Plants (D1) F Position (D2) Litard (D3) Taphic Relief (D4) Test (D5)
Saturation Water Ma Sediment Drift Depo Algal Mat Iron Depo Surface So Field Observa Surface Water	n (A3) rks (B1) Deposits (B2) osits (B3) or Crust (B4) osits (B5) oil Cracks (B6) ations: r Present? Present?	Yes 〇	No \bigcirc	Sparse Marl D Hydro Dry-Se Other	ely Vegetated C Deposits (B15) Igen Sulfide Odd eason Water Ta (Explain in Ren	Concave Surfactor (C1) able (C2)	ce (B8)	Water Stair □ Drainage Pa □ Oxidized Rh □ Presence of □ Salt Deposi □ Stunted or □ Geomorphi □ Shallow Aqı □ Microtopog □ FAC-neutral	ned Leaves (B9) atterns (B10) hizospheres along Living Roots (C3) f Reduced Iron (C4) ts (C5) Stressed Plants (D1) f Position (D2) hitard (D3) raphic Relief (D4) Test (D5)
Saturation Water Ma Sediment Drift Depo Algal Mat Iron Depo Surface So Field Observa Surface Water Water Table P Saturation Pre (includes capil	n (A3) rks (B1) Deposits (B2) posits (B3) or Crust (B4) posits (B5) poil Cracks (B6) pations: r Present? Present? planting (B1) present? planting (B2) present? planting (B3)	Yes O Yes O Yes O	No O	Sparse Marl E Hydro Dry-Se Other Depth Depth	ely Vegetated C Deposits (B15) gen Sulfide Odd eason Water Ta (Explain in Ren n (inches):	Concave Surfactor (C1) able (C2) marks)	Wetlai	Water Stair □ Drainage Pa □ Oxidized Rh □ Presence of □ Salt Deposi □ Stunted or □ Geomorphi □ Shallow Aqı □ Microtopog □ FAC-neutral	ned Leaves (B9) atterns (B10) hizospheres along Living Roots (C3) F Reduced Iron (C4) ts (C5) Stressed Plants (D1) F Position (D2) Litard (D3) Taphic Relief (D4) Test (D5)
Saturation Water Ma Sediment Drift Depo Algal Mat Iron Depo Surface So Field Observa Surface Water Water Table P Saturation Pre (includes capil	n (A3) rks (B1) Deposits (B2) posits (B3) or Crust (B4) posits (B5) poil Cracks (B6) pations: r Present? Present? planting (B1) present? planting (B2) present? planting (B3)	Yes O Yes O Yes O	No O	Sparse Marl E Hydro Dry-Se Other Depth Depth	ely Vegetated Copeposits (B15) ogen Sulfide Odd eason Water Ta (Explain in Ren in (inches):	Concave Surfactor (C1) able (C2) marks)	Wetlai	Water Stair □ Drainage Pa □ Oxidized Rh □ Presence of □ Salt Deposi □ Stunted or □ Geomorphi □ Shallow Aqı □ Microtopog □ FAC-neutral	ned Leaves (B9) atterns (B10) hizospheres along Living Roots (C3) F Reduced Iron (C4) ts (C5) Stressed Plants (D1) F Position (D2) Litard (D3) Taphic Relief (D4) Test (D5)
Saturation Water Ma Sediment Drift Depo Algal Mat Iron Depo Surface So Field Observa Surface Water Water Table P Saturation Pre (includes capil	n (A3) rks (B1) Deposits (B2) osits (B3) or Crust (B4) osits (B5) oil Cracks (B6) ations: r Present? Present? esent? llary fringe) ded Data (stre	Yes O Yes O Yes O	No O	Sparse Marl E Hydro Dry-Se Other Depth Depth	ely Vegetated Copeposits (B15) ogen Sulfide Odd eason Water Ta (Explain in Ren in (inches):	Concave Surfactor (C1) able (C2) marks)	Wetlai	Water Stair □ Drainage Pa □ Oxidized Rh □ Presence of □ Salt Deposi □ Stunted or □ Geomorphi □ Shallow Aqı □ Microtopog □ FAC-neutral	ned Leaves (B9) atterns (B10) hizospheres along Living Roots (C3) F Reduced Iron (C4) ts (C5) Stressed Plants (D1) F Position (D2) Litard (D3) Taphic Relief (D4) Test (D5)
Saturation Water Ma Sediment Drift Depo Algal Mat Iron Depo Surface So Field Observa Surface Water Water Table P Saturation Pre (includes capil Describe Record	n (A3) rks (B1) Deposits (B2) osits (B3) or Crust (B4) osits (B5) oil Cracks (B6) ations: r Present? Present? esent? llary fringe) ded Data (stre	Yes O Yes O Yes O	No O	Sparse Marl E Hydro Dry-Se Other Depth Depth	ely Vegetated Copeposits (B15) ogen Sulfide Odd eason Water Ta (Explain in Ren in (inches):	Concave Surfactor (C1) able (C2) marks)	Wetlai	Water Stair □ Drainage Pa □ Oxidized Rh □ Presence of □ Salt Deposi □ Stunted or □ Geomorphi □ Shallow Aqı □ Microtopog □ FAC-neutral	ned Leaves (B9) atterns (B10) hizospheres along Living Roots (C3) F Reduced Iron (C4) ts (C5) Stressed Plants (D1) F Position (D2) Litard (D3) Taphic Relief (D4) Test (D5)
Saturation Water Ma Sediment Drift Depo Algal Mat Iron Depo Surface So Field Observa Surface Water Water Table P Saturation Pre (includes capil Describe Record	n (A3) rks (B1) Deposits (B2) osits (B3) or Crust (B4) osits (B5) oil Cracks (B6) ations: r Present? Present? esent? llary fringe) ded Data (stre	Yes O Yes O Yes O	No O	Sparse Marl E Hydro Dry-Se Other Depth Depth	ely Vegetated Copeposits (B15) ogen Sulfide Odd eason Water Ta (Explain in Ren in (inches):	Concave Surfactor (C1) able (C2) marks)	Wetlai	Water Stair □ Drainage Pa □ Oxidized Rh □ Presence of □ Salt Deposi □ Stunted or □ Geomorphi □ Shallow Aqı □ Microtopog □ FAC-neutral	ned Leaves (B9) atterns (B10) hizospheres along Living Roots (C3) F Reduced Iron (C4) ts (C5) Stressed Plants (D1) F Position (D2) Litard (D3) Taphic Relief (D4) Test (D5)

U.S. Army Corps of Engineers Alaska Version 2.0