WETLAND DETERMINATION DATA FORM - Alaska Region

Project/Site: Susitna-Watana Hydroelectric Project	Borough/City: Matanuska-Susitna Borough Sampling Date: 25-Jun-12
Applicant/Owner: Alaska Energy Authority	Sampling Point: SW12_T28_08
Investigator(s): JGK	Landform (hillside, terrace, hummocks etc.): Shoreline
Local relief (concave, convex, none): flat	Slope: % / 0.3 ° Elevation: 714
Subregion : Interior Alaska Mountains Lat.	62.8720481223 Long.: -148.367175671 Datum: NAD83
Soil Map Unit Name:	NWI classification: PEM1E
	ar? Yes No (If no, explain in Remarks.) ntly disturbed? Are "Normal Circumstances" present? Yes No problematic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS - Attach site map showing sa	ampling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes No	

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes ● Yes ● Yes ●	No () No () No ()	Is the Sampled Area within a Wetland?	Yes 🖲 No 🔿
Remarks:				

VEGETATION - Use scientific names of plants. List all species in the plot.

			Abc	olute	Dominant	Indicator	Dominance Test worksheet:
Tre	e Stratum			over	Species?	Status	Number of Dominant Species That are OBL, FACW, or FAC: 2 (A)
1.				0			
2.				0			Total Number of Dominant Species Across All Strata: 2 (B)
3.				0			Percent of dominant Species
4.				0			That Are OBL, FACW, or FAC: (A/B)
5.				0			Prevalence Index worksheet:
		Total Cover		0			Total % Cover of: Multiply by:
Sap	ling/Shrub Stratum	50% of Total Cover:	0	20% (of Total Cover:	0	OBL Species <u>55</u> x 1 = <u>55</u>
1.				0			FACW Species <u>15</u> x 2 = <u>30</u>
-				0			FAC Species <u>0</u> x 3 = <u>0</u>
3.				0			FACU Species x 4 =
4.				0			UPL Species x 5 =
5.				0			Column Totals: 70 (A) <u>85</u> (B)
~				0			Prevalence Index = $B/A = 1.214$
7.				0			Prevalence Index = B/A = <u>1.214</u>
				0			Hydrophytic Vegetation Indicators:
9.				0			✓ Dominance Test is > 50%
				0			✓ Prevalence Index is \leq 3.0
		Total Cover	·:	0			Morphological Adaptations ¹ (Provide supporting data in
Her	<u>b Stratum</u>	50% of Total Cover:	0	20%	of Total Cover:	0	Remarks or on a separate sheet)
1.	Carex aquatilis			40	\checkmark	OBL	Problematic Hydrophytic Vegetation ¹ (Explain)
2.	Comarum palustre			15	\checkmark	OBL	¹ Indicators of hydric soil and wetland hydrology must
3.	Calamagrostis stricta			10		FACW	be present, unless disturbed or problematic.
4.	Eriophorum russeolum			5		FACW	Plot size (radius, or length x width)10m
5.				0			% Cover of Wetland Bryophytes
6.				0			(Where applicable)
				0			% Bare Ground
				0			Total Cover of Bryophytes 25
				0			
				0			Hydrophytic
		Total Cover	:	70			Vegetation
		50% of Total Cover:	35	20% (of Total Cover:	14	Present? Yes No
Rem	arks:						

Depth	Matrix	<u> </u>		lox Features	pe ¹ Loc ²	Texture	Remarks
	oist)	%	Color (moist)	% Ту	pe ¹ <u>Loc</u> ²	Fibric Organics	Reliaiks
0-11							
,							
·			p			-	
			·				
			2				
¹ Type: C=Concentration. D	=Depletion. I	Reduce			-	annel. M=Matrix	
Hydric Soil Indicators:			Indicators for Pr	oblematic Hy	dric Soils: ³		
Histosol or Histel (A1)			Alaska Color Ch	nange (TA4)		Alaska Gleyed Without	Hue 5Y or Redder
✓ Histic Epipedon (A2)			Alaska Alpine s		Г	Underlying Layer	
Hydrogen Sulfide (A4)			Alaska Redox V	Vith 2.5Y Hue	L	Other (Explain in Rema	irks)
Thick Dark Surface (A12	.)		³ One indicator of	hydrophytic ve	netation one pri	mary indicator of wetland	hydrology
Alaska Gleyed (A13)			and an appropriat				nydrology,
Alaska Redox (A14)			⁴ Give details of co	olor change in F	emarks		
Alaska Gleyed Pores (A1	5)			bior change in i	Cinano		
Restrictive Layer (if present):							
Type: ice						Hydric Soil Preser	nt? Yes 🖲 No 🔾
Depth (inches): 11							
Remarks:	epipedon b	ut probably	a histosol because	of fibric nature	of soil.		
	c epipedon b	ut probably	a histosol because	of fibric nature	of soil.		
Remarks: Assume soil is at least a histic	c epipedon bi	ut probably	a histosol because	of fibric nature	of soil.		
Remarks: Assume soil is at least a histic		ut probably	a histosol because (of fibric nature	of soil.	Secondary In	dicators (two or more are required)
Remarks: Assume soil is at least a histic	ators:	ut probably	a histosol because	of fibric nature	of soil.	Water St	ained Leaves (B9)
Remarks: Assume soil is at least a histic HYDROLOGY Wetland Hydrology Indica Primary Indicators (any one Surface Water (A1)	ators:	ut probably		of fibric nature		Water St	
Remarks: Assume soil is at least a histic HYDROLOGY Wetland Hydrology Indica Primary Indicators (any one Surface Water (A1) I High Water Table (A2)	ators:	ut probably	Inundation V Sparsely Veg	isible on Aerial etated Concave	Imagery (B7)	Water St	ained Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3)
Remarks: Assume soil is at least a histic HYDROLOGY Wetland Hydrology Indica Primary Indicators (any one Surface Water (A1) V High Water Table (A2) V Saturation (A3)	ators:	ut probably	Inundation V	isible on Aerial etated Concave	Imagery (B7)	Water St Drainage Oxidized Presence	ained Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4)
Remarks: Assume soil is at least a histic HYDROLOGY Wetland Hydrology Indica Primary Indicators (any one Surface Water (A1) V High Water Table (A2) Saturation (A3) Water Marks (B1)	ators: is sufficient)	ut probably	Inundation V Sparsely Veg Marl Deposits Hydrogen Su	isible on Aerial etated Concave s (B15) Ifide Odor (C1)	Imagery (B7) Surface (B8)	Water St Drainage Oxidized Presence Salt Dep	ained Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) osits (C5)
Remarks: Assume soil is at least a histic HYDROLOGY Wetland Hydrology Indica Primary Indicators (any one Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2)	ators: is sufficient)	ut probably	Inundation V Sparsely Veg Marl Deposits Hydrogen Su Dry-Season V	isible on Aerial etated Concave s (B15) Ifide Odor (C1) Vater Table (C2	Imagery (B7) Surface (B8)	Water St Drainage Oxidized Presence Salt Dep Stunted	ained Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) osits (C5) or Stressed Plants (D1)
Remarks: Assume soil is at least a histic HYDROLOGY Wetland Hydrology Indica Primary Indicators (any one Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3)	ators: is sufficient)	ut probably	Inundation V Sparsely Veg Marl Deposits Hydrogen Su Dry-Season V	isible on Aerial etated Concave s (B15) Ifide Odor (C1)	Imagery (B7) Surface (B8)	Water St Drainage Oxidized Presence Salt Dep Stunted Geomorp	ained Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) posits (C5) or Stressed Plants (D1) whic Position (D2)
Remarks: Assume soil is at least a histic HYDROLOGY Wetland Hydrology Indica Primary Indicators (any one Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4)	ators: is sufficient)	ut probably	Inundation V Sparsely Veg Marl Deposits Hydrogen Su Dry-Season V	isible on Aerial etated Concave s (B15) Ifide Odor (C1) Vater Table (C2	Imagery (B7) Surface (B8)	□ Water St □ Drainage □ Oxidized □ Presence □ Salt Dep □ Stunted □ Geomorp ✔ Shallow	ained Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) osits (C5) or Stressed Plants (D1) ohic Position (D2) Aquitard (D3)
Remarks: Assume soil is at least a histic HYDROLOGY Wetland Hydrology Indica Primary Indicators (any one Surface Water (A1) ✓ High Water Table (A2) ✓ Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5)	ators: is sufficient)	ut probably	Inundation V Sparsely Veg Marl Deposits Hydrogen Su Dry-Season V	isible on Aerial etated Concave s (B15) Ifide Odor (C1) Vater Table (C2	Imagery (B7) Surface (B8)	□ Water St □ Drainage □ Oxidized □ Presence □ Salt Dep □ Stunted □ Geomorp ✓ Shallow □ Microtop	ained Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) osits (C5) or Stressed Plants (D1) whic Position (D2) Aquitard (D3) ographic Relief (D4)
Remarks: Assume soil is at least a histo HYDROLOGY Wetland Hydrology Indica Primary Indicators (any one Surface Water (A1) V High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6)	ators: is sufficient)	ut probably	Inundation V Sparsely Veg Marl Deposits Hydrogen Su Dry-Season V	isible on Aerial etated Concave s (B15) Ifide Odor (C1) Vater Table (C2	Imagery (B7) Surface (B8)	□ Water St □ Drainage □ Oxidized □ Presence □ Salt Dep □ Stunted □ Geomorp ✓ Shallow □ Microtop	ained Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) osits (C5) or Stressed Plants (D1) ohic Position (D2) Aquitard (D3)
Remarks: Assume soil is at least a histic HYDROLOGY Wetland Hydrology Indica Primary Indicators (any one Surface Water (A1) ✓ High Water Table (A2) ✓ Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Field Observations:	ators: is sufficient)		Inundation V Sparsely Veg Marl Deposits Hydrogen Su Dry-Season V Other (Explai	isible on Aerial etated Concave s (B15) lfide Odor (C1) Water Table (C2 in in Remarks)	Imagery (B7) Surface (B8)	□ Water St □ Drainage □ Oxidized □ Presence □ Salt Dep □ Stunted □ Geomorp ✓ Shallow □ Microtop	ained Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) osits (C5) or Stressed Plants (D1) whic Position (D2) Aquitard (D3) ographic Relief (D4)
Remarks: Assume soil is at least a histic HYDROLOGY Wetland Hydrology Indica Primary Indicators (any one Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Field Observations: Surface Water Present?	ators: is sufficient)	No 💿	Inundation V Sparsely Veg Marl Deposits Hydrogen Su Dry-Season V Other (Explain Depth (inchest)	isible on Aerial etated Concave s (B15) Ifide Odor (C1) Nater Table (C2 in in Remarks) s):	Imagery (B7) Surface (B8))	Water St Drainage Oxidized Presence Salt Dep Stunted Geomorp ✓ Shallow Microtop ✓ FAC-neut	ained Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) osits (C5) or Stressed Plants (D1) ohic Position (D2) Aquitard (D3) ographic Relief (D4) rral Test (D5)
Remarks: Assume soil is at least a histic HYDROLOGY Wetland Hydrology Indica Primary Indicators (any one Surface Water (A1) V High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Field Observations: Surface Water Present? Water Table Present?	ators: is sufficient) Yes O Yes •	No () No ()	Inundation V Sparsely Veg Marl Deposits Hydrogen Su Dry-Season V Other (Explain Depth (incher Depth (incher)	isible on Aerial etated Concave s (B15) Ifide Odor (C1) Water Table (C2 in in Remarks) s): s): s): 0	Imagery (B7) Surface (B8))	□ Water St □ Drainage □ Oxidized □ Presence □ Salt Dep □ Stunted □ Geomorp ✓ Shallow □ Microtop	ained Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) osits (C5) or Stressed Plants (D1) whic Position (D2) Aquitard (D3) ographic Relief (D4) rral Test (D5)
Remarks: Assume soil is at least a histic HYDROLOGY Wetland Hydrology Indica Primary Indicators (any one Surface Water (A1) V High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Field Observations: Surface Water Present?	ators: is sufficient)	No () No ()	Inundation V Sparsely Veg Marl Deposits Hydrogen Su Dry-Season V Other (Explain Depth (inchest)	isible on Aerial etated Concave s (B15) Ifide Odor (C1) Water Table (C2 in in Remarks) s): s): s): 0	Imagery (B7) Surface (B8))	Water St Drainage Oxidized Presence Salt Dep Stunted Geomorp ✓ Shallow Microtop ✓ FAC-neut	ained Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) osits (C5) or Stressed Plants (D1) ohic Position (D2) Aquitard (D3) ographic Relief (D4) rral Test (D5)
Remarks: Assume soil is at least a histic HYDROLOGY Wetland Hydrology Indica Primary Indicators (any one Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Field Observations: Surface Water Present? Water Table Present? Saturation Present?	ators: is sufficient) Yes O Yes O Yes O	No (•) No (-) No (-)	Inundation V Sparsely Veg Marl Deposits Hydrogen Su Dry-Season V Other (Explain Depth (incher Depth (incher Depth (incher	isible on Aerial etated Concave s (B15) Ifide Odor (C1) Water Table (C2 in in Remarks) es): es): 0 es): 0	Imagery (B7) Surface (B8)) Wetla	Water St Drainage Oxidized Presence Salt Dep Stunted Geomorp ✓ Shallow Microtop ✓ FAC-neut	ained Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) osits (C5) or Stressed Plants (D1) ohic Position (D2) Aquitard (D3) ographic Relief (D4) rral Test (D5)
Remarks: Assume soil is at least a histic HYDROLOGY Wetland Hydrology Indica Primary Indicators (any one Surface Water (A1) W High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Field Observations: Surface Water Present? Water Table Present? Water Table Present? Saturation Present? (includes capillary fringe)	ators: is sufficient) Yes O Yes O Yes O	No (•) No (-) No (-)	Inundation V Sparsely Veg Marl Deposits Hydrogen Su Dry-Season V Other (Explain Depth (incher Depth (incher Depth (incher	isible on Aerial etated Concave s (B15) Ifide Odor (C1) Water Table (C2 in in Remarks) es): es): 0 es): 0	Imagery (B7) Surface (B8)) Wetla	Water St Drainage Oxidized Presence Salt Dep Stunted Geomorp ✓ Shallow Microtop ✓ FAC-neut	ained Leaves (B9) e Patterns (B10) Rhizospheres along Living Roots (C3) e of Reduced Iron (C4) osits (C5) or Stressed Plants (D1) ohic Position (D2) Aquitard (D3) ographic Relief (D4) rral Test (D5)