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1. Introduction

This report summarizes theoretical and computational aspects of the sediment transport
formulations used in the EFDC model. Theoretical and computational aspects for the
basic EFDC hydrodynamic and generic transport model components are presented in
Hamrick (1992). Theoretical and computational aspects of the EFDC water quality-
eutrophication model component are presented in Park et al. (1995). The paper by
Hamrick and Wu (1997) also summarized computational aspects of the hydrodynamic,
generic transport and water quality-eutrophication components of the EFDC model. This
report is organized as follows. Chapter 2 summarizes the hydrodynamic and generic
transport formulations used in EFDC. Chapter 3 summarizes the solution of the transport
equation for suspended cohesive and noncohesive sediment. A discussion of near bed



turbulence closure approximations relevant to sediment transport processes is present in
Chapter 4. Chapters 5 and 6 summarize cohesive and noncohesive sediment settling,
deposition and resuspension process representations used the sediment transport model
component. The representation of the sediment bed and it geomechanical properties are
presented in Chapter 7. This report will be subsequently revised to incorporate
documentation of the EFDC model's sorptive contaminant transport and fate formulations
as well as additional enhancements to the sediment transport formulations which are
currently being tested.

2. Summary of Hydrodynamic and Generic Transport
Formulations

The EFDC model's hydrodynamic component is based on the three-dimensional
hydrostatic equations formulated in curvilinear-orthogonal horizontal coordinates and a
sigma or stretched vertical coordinate. The momentum equations are:

∂t mxmyHu( )+ ∂ x my Huu( )+ ∂y mxHvu( )+ ∂z mxmywu( )− femxmyHv
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*
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mxmy fe = mxmy f − u∂ ymx + v∂ xmy (2.3)

τ xz ,τ yz( )= AvH
−1∂ z u ,v( ) (2.4)

where u and u are the horizontal velocity components in the dimensionless curvilinear-
orthogonal horizontal coordinates x and y, respectively. The scale factors of the
horizontal coordinates are mx and my. The vertical velocity in the stretched vertical
coordinate z is w. The physical vertical coordinates of the free surface and bottom bed
are zs* and zb* respectively. The total water column depth is H, and φ is the free surface
potential which is equal to gzs*. The effective Coriolis acceleration fe incorporates the
curvature acceleration terms, with the Coriolis parameter, f, according to (2.3). The Q
terms in (2.1) and (2.2) represent optional horizontal momentum diffusion terms. The
vertical turbulent viscosity Av relates the shear stresses to the vertical shear of the
horizontal velocity components by (4.4). The kinematic atmospheric pressure, referenced
to water density, is patm, while the excess hydrostatic pressure in the water column is
given by:

∂ z p = −gHb = −gH ρ − ρo( )ρo

−1 (2.5)

where ρ and ρo are the actual and reference water densities and b is the buoyancy. The
horizontal turbulent stress on the last lines of (2.1) and (2.2), with AH being the horizontal
turbulent viscosity, are typically retained when the advective acceleration are represented
by central differences. The last terms in (2.1) and (2.2) represent vegetation resistance
where cp is a resistance coefficient and Dp is the dimensionless projected vegetation area
normal to the flow per unit horizontal area.

The three-dimensional continuity equation in the stretched vertical and curvilinear-
orthogonal horizontal coordinate system is:

∂t mxmyH( )+∂ x myHu( )+ ∂ y mxHv( )+∂ z mxmyw( )= QH
(2.6)

with QH representing volume sources and sinks including rainfall, evaporation,
infiltration and lateral inflows and outflows having negligible momentum fluxes. When
the sediment transport model component operates in a geomorphologic mode, QH also
includes the volume flux of sediment and water between the sediment bed and the water
column. Integration of (2.6) over the water column gives

∂t mxmyH( )+∂ x myHu( )+ ∂ y mxHv( )= QH
(2.7)

the barotropic or external mode continuity equation where the over bars indicate depth
averaged quantities. Subtracting (2.7) form (2.6) gives

∂ x my H u − u( )( )+ ∂y mxH v − v( )( )+∂ z mxmyw( )= QH − QH
(2.8)



the internal mode continuity equation.

The generic transport equation for a dissolved or suspended material having a mass per
unit volume concentration C, is

∂t mxmyHC( )+ ∂ x myHuC( )+ ∂ y mx HvC( )+ ∂ z mxmywC( )− ∂ z mxmywscC( )
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(2.9)

where Kv and KH are the vertical and horizontal turbulent diffusion coefficients,
respectively, wsc is a positive settling velocity went C represents a suspended material,
and Qc represents external sources and sinks and reactive internal sources and sinks.

The solution of the momentum equations, (2.1) and (2.2) and the transport equation (2.9),
requires the specification of the vertical turbulent viscosity, Av, and diffusivity, Kv. To
provide the vertical turbulent viscosity and diffusivity, the second moment turbulence
closure model developed by Mellor and Yamada (1982) and modified by Galperin et al
(1988) and Blumberg et al (1988) is used. The MY model relates the vertical turbulent
viscosity and diffusivity to the turbulent intensity, q, a turbulent length scale, l, and a
turbulent intensity and length scaled based Richardson number, Rq, by:
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Rq = −
gH∂ zb

q2

l 2

H 2

(2.12)

where the so-called stability functions, φA and φK, account for reduced and enhanced
vertical mixing or transport in stable and unstable vertically density stratified
environments, respectively. Mellor and Yamada (1982) specify the constants A1, B1, C1,
A2, and B2 as 0.92, 16.6, 0.08, 0.74, and 10.1, respectively.

The turbulent intensity and the turbulent length scale are determined by a pair of transport
equations:
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where (E1, E2, E3) = (1.8, 1.33, 0.25). The third on the last line of each equation
represents net turbulent energy production by vegetation drag where ηp is a production
efficiency factor have a value less than one. The terms Qq and Ql may represent
additional source-sink terms such as subgrid scale horizontal turbulent diffusion. The
vertical diffusivity, Aq, is set to 0.2ql as recommended by Mellor and Yamada (1982) For
stable stratification, Galperin et al (1988) suggest limiting the length scale such that the
square root of Rq is less than 0.52. When horizontal turbulent viscosity and diffusivity
are included in the momentum and transport equations, they are determined
independently using Smagorinsky's (1963) subgrid scale closure formulation.

Vertical boundary conditions for the solution of the momentum equations are based on
the specification of the kinematic shear stresses, equation (2.4), at the bed and the free
surface. At the free surface, the x and y components of the stress are specified by the
water surface wind stress

τ xz ,τ yz( )= τ sx ,τ sy( )= cs Uw

2 + Vw

2 Uw ,Vw( ) (2.15)



where Uw and Vw are the x and y components of the wind velocity at 10 meters above the
water surface. The wind stress coefficient is given by:

cs = 0.001
ρa

ρw

0.8 + 0.065 Uw

2
+ Vw

2( ) (2.16)

for the wind velocity components in meters per second, with ρa and ρw denoting air and
water densities respectively. At the bed, the stress components are presumed to be related
to the near bed or bottom layer velocity components by the quadratic resistance
formulation

τ xz ,τ yz( )= τ bx ,τ by( )= cb u1

2 + v1

2 u1,v1( ) (2.17)

where the 1 subscript denotes bottom layer values. Under the assumption that the near
bottom velocity profile is logarithmic at any instant of time, the bottom stress coefficient
is given by

cb =
κ

ln(∆1 / 2zo )

 

 
  

 
 

2

(2.18)

where κ, is the von Karman constant, ∆1 is the dimensionless thickness of the bottom
layer, and zo=zo*/H is the dimensionless roughness height. Vertical boundary conditions
for the turbulent kinetic energy and length scale equations are:

q 2 = B1

2 / 3 τs : z = 1 (2.19)

q 2 = B1

2 / 3 τb : z = 0 (2.20)

l = 0 : z = 0,1 (2.21)

where the absolute values indicate the magnitude of the enclosed vector quantity.
Equations (2.17) and (2.18) can become inappropriate under a number of conditions
associated with either or both high near bottom sediment concentrations and high
frequency surface wave activity. The quantification of sediment and wave effects on the
bottom stress is discussed in Chapter 4.

3. Solution of the Sediment Transport Equation

The EFDC model uses a high order upwind difference solution scheme for the advective
terms in the transport equation. Although the scheme is designed to minimize numerical
diffusion, a small amount of horizontal diffusion remains inherent in the scheme. Due
the small inherent numerical diffusion, the physical horizontal diffusion terms in (2.9) are
omitted as to give:



∂t mxmyHSj( )+ ∂ x my HuSj( )+ ∂ y mxHvSj( )+ ∂ z mxmywSj( )

−∂ z mxmywsj Sj( )= ∂z mxmy

KV

H
∂ z Sj

 
 

 
 + Qsj

E + Qsj

I

(3.1)

where Sj represents the concentration of the jth sediment class and the source-sink term
has been split into an external part, which would include point and nonpoint source loads,
and internal part which could include reactive decay of organic sediments or the exchange
of mass between sediment classes if floc formation and destruction were simulated.
Vertical boundary conditions for (3.1) are:

−
KV

H
∂ zS j − wsS = J jo : z ≈ 0

−
KV

H
∂z S j − wsjS j = 0 : z =1

(3.2)

where Jo is the net water column-bed exchange flux defined as positive into the water
column.

The numerical solution of (3.1) utilizes a fractional step procedure. The first step
advances the concentration due to advection and external sources and sinks having
corresponding volume fluxes by

H n+1S* = Hn Sn +
θ

mxmy

Qsj
E( )

n+1 / 2

−
θ

mxmy

∂x my Hu( )n +1/ 2 Sn( )+ ∂ y mx Hv( )n+1 / 2 Sn( )+ ∂z mxmyw
n+1/ 2Sn( )( )

(3.3)

where n and n+1 denote the old and new time levels and * denotes the intermediate
fractional step results. The portion of the source and sink term, associated with
volumetric sources and sinks is included in the advective step for consistency with the
continuity constraint. This term, as well as the advective field (u,v,w), is defined as
intermediate in time between the old and new time levels consistent with continuity.
Note that the sediment class subscripts have be dropped for clarity. The advection set
uses the antidiffusive MPDATA scheme (Smolarkiewicz and Clark, 1986) with optional
flux corrected transport (Smolarkiewicz and Grabowski, 1990).

The second fractional settling step is given by

S ** = S* +
θ

H
n +1 ∂z wsS

**( ) (3.4)



which is solved by a fully implicit upwind difference scheme with an optional
antidiffusion correction across internal water column layer interfaces. For the bottom bed
adjacent layer, (3.4) is written as:

S1

**
= S1

*
+

θ

∆1H
n+1 ws S

**( )
2

−
θ

∆z H
n+1 wsS

**( )
1

(3.5)

The water column-bed flux (3.2) can be written as

−
KV

H
∂ zS j − wsS = Jo = wrSr − Pd wsS

(3.6)

where the product, wrSr symbolically represents the resuspension flux and Pd the
probability of deposition which is less than or equal to one. Since the remaining step will
represent diffusion, for solution efficiency, the diffusive flux at the bed in (3.6) is set to
zero in the settling and subsequent diffusion set. Equation (3.5) then becomes

1 +
θPd ws

∆z H
n+1

 

 
  

 
 S1

** = S1

* +
θ

∆1H
n +1 ws S

**( )
2

+
θ

∆z H
n+1 wrSr

(3.7)

In the actual EFDC code, if the net bed flux, Jo is positive, it is limited such that only the
current top layer of the bed can be completely resuspended in single time step. The
remaining fractional step is an implicit diffusion step

S n+1 = S** +θ∂z

KV

H2

 
 

 
 

n+1

∂ z S
n+1

 

 
  

 
 

(3.8)

with zero diffusive fluxes at the bed and water surface.

4. Near Bed Turbulence Closure

The proper formulation of hydrodynamic and sediment boundary layer parameterization
appropriate for representing the bottom stress and the water column-bed exchange of
sediment under conditions including high frequency surface waves and high near bed
suspended sediment gradients should be based upon the near bed turbulent kinetic energy
balance. The near bed balance assumes an equilibrium between production of turbulence
by shear stresses, vegetation drag, and unstable density stratification, the suppression of
turbulence by stable stratification, and the dissipation. The turbulent kinetic energy
equation (2.13) reduces to

Av

H
∂z u( )2

+ ∂z v( )2( )+ cp u2 + v2( )
3/ 2

+ gK v∂ z b =
Hq3

B1l

(4.1)

Multiplying (4.1) by Av/H and using (2.4) gives



τ xz

2 +τ yz

2( )+ cp

Av

H
u2 + v2( )

3/ 2

+ gKv

Av

H
∂z b =

Av

H

Hq3

B1l

(4.2)

In the absence of vegetation and stratification, evaluation of (4.2) at the bed, using (2.10)
gives

τ xz

2 +τ yz

2( )
b

= τ b

2
=

1

B1

1 / 3 q
l

H

Hq3

B1l
=

q4

B1

4 / 3

(4.3)

recovering the boundary condition (2.20). For the general case, the definition of Av is
introduced into (4.2) to give

q 4 − B1 gH
l

H

K v

H
∂z b + cp

l

H
u2 + v2( )

3/ 2 
 

 
 q −

B1

φA

τxz

2 +τ yz

2( )= 0
(4.4)

Near the bed for three-dimensional model applications and over the depth for two-
dimensional applications, the turbulent length scale can be specified by the algebraic
relationship

l

H
= κz 1 − z( )λ (4.5)

If high frequency surface waves are present, the shear stress can be decomposed into
current and wave components

τ xz = τ c cosψ c +τ w cosψ w

τ yz = τc sinψ c +τ w sinψ w

(4.6)

where τc and τw are the current and wave shear stress magnitudes. Evaluating the stress
term in (4.4) gives

τ xz

2
+τ yz

2( )= τc

2
+ τw

2
+ 2 cosψ c cosψ w + sinψ c sinψ w( )τ cτ w

(4.7)

Assuming the wave shear stress to be periodic

τ w = τwm sin ωt( ) (4.8)

the mean square stress average over the wave period is given by

τ xz

2 + τ yz

2 = τc

2 +
1

2
τwm

2 (4.9)



For wave periods much smaller than the time step of the numerical integration, (4.4) is
well approximated using (4.9) as

q 4 − B1 gH
l

H

K v

H
∂z b + cp

l

H
u2 + v2( )

3/ 2 
 

 
 q −

B1

φA

τ c

2 +
1

2
τ wm

2 
 

 
 = 0

(4.10)

The buoyancy gradient near the bed is primarily due to gradients in suspended sediment
concentration with the effect of sediment on density given by

ρ =
ε

1+ ε

 
 

 
 ρw +

1

1 + ε

 
 

 
 ρs =

ε

1 + ε

 
 

 
 ρw + S

(4.11)

where ε is the void ratio of the sediment water mixture and S is the mass concentration of
sediment. The buoyancy can be expressed in terms of the sediment concentration using

b =
ρ − ρw

ρw

=
ρs − ρw

ρwρs

 

 
  

 
 S = αS

(4.12)

with (4.10) becoming

q 4 − B1 αgH
l

H

Kv

H
∂z S + cp

l

H
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3/ 2 
 

 
 q −

B1

φA

τ c

2 +
1

2
τ wm

2 
 

 
 = 0

(4.13)

Equation (4.13) provides an algebraic equation for specifying the turbulent intensity q at
any level in the hydrodynamic and sediment boundary layers. Since the boundary layer
parameter are recalculated at each time step of the hydrodynamic model integration, the
solution of (4.13) can be approximated by

q
4( )

n+1

= B1 αgH
l

H

Kv

H
∂ z Sq + cp

l

H
u

2
+ v

2( )
3 / 2

q
 
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 
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n

+
B1

φA

τ c

2
+

1

2
τ wm

2 
 

 
 

n (4.14)

where n+1 and n denote the new and old time levels, respectively. Since the vertical
gradient of the sediment concentration is generally negative, there is low possibility of the
right side of (4.13) also being negative. In such and event, the turbulent intensity is set to
a small value on the order of 1E-4.

5. Noncohesive Sediment Settling, Deposition and Resuspension

Noncohesive inorganic sediments settle as discrete particles, with hindered settling and
multiphase interactions becoming important in regions of high sediment concentration
near the bed. At low concentrations, the settling velocity for the jth noncohesive
sediment class corresponds to the settling velocity of a discrete particle:



wsj = wsoj (5.1)

At higher concentrations and hindering settling conditions, the settling velocity is less
than the discrete velocity and can be expressed in the form

wsj = 1−
Si

ρsii

I

∑
 

 
  

 
 

n

wsoj

(5.2)

where ρs is the sediment particle density with values of n ranging from 2 (Cao et al.,
1996) to 4 (Van Rijn, 1984). The expression (5.2) is approximated to within 5 per cent
by

wsj = 1− n
Si

ρsii

I

∑
 

 
  

 
 wsoj

(5.3)

for total sediment concentrations up to 200,000 mg/liter. For total sediment
concentrations less than 25,000 mg/liter, neglect of the hindered settling correction results
in less than a 5 per cent error in the settling velocity, which is well within the range of
uncertainty in parameters used to estimate the discrete particle settling velocity.

At the water column-sediment bed interface, the net flux of noncohesive sediment is
controlled primarily by the shear stress exerted by the near bed flow and the size and
density of the noncohesive material at the bed surface. Under steady, uniform flow and
sediment loading conditions, an equilibrium distribution of sediment in the water column
tends to be established, with the resuspension and deposition fluxes canceling each other.
Using a number of simplifying assumptions, the equilibrium sediment concentration
distribution in the water column can be expressed analytically in terms of the near bed
reference or equilibrium concentration, the settling velocity and the vertical turbulent
diffusivity. For unsteady or spatially varying flow conditions, the water column sediment
concentration distribution varies in space and time in response to sediment load
variations, changes in hydrodynamic transport, and associated nonzero fluxes across the
water column-sediment bed interface. An increase or decrease in the bed stress and the
intensity of vertical turbulent mixing will result in net erosion or deposition, respectively,
at a particular location or time.

To illustrate how an appropriate sediment bed flux boundary condition can be
established, consider the approximation to the sediment transport equation (3.1) for
nearly uniform horizontal conditions

∂t HS( ) = ∂ z

Kv

H
∂ zS + ws S

 
 

 
 

(5.4)

Integrating (5.4) over the depth of the bottom hydrodynamic model layer gives



∂t ∆HS( )= J0 − J∆
(5.5)

where the over bar denotes the mean over the dimensionless layer thickness, ∆.
Subtracting (5.5) from (5.4) gives

∂t H ′ S( ) = ∂ z

Kv

H
∂ z S + wsS

 
 

 
 −

J0 − J∆

∆

 
 

 
 

(5.6)

Assuming that the rate of change of the deviation of the sediment concentration from the
mean is small

∂t H ′ S( )≤ ∂ t HS( ) (5.7)

allows (5.6) to be approximated by

∂ z

Kv

H
∂ z S + wsS

 
 

 
 =

J0 − J∆

∆

 
 

 
 

(5.8)

Integrating (5.8) once gives

Kv

H
∂ zS + ws S =

J0 − J∆

∆

 
 

 
 

z

∆
− J0

(5.9)

Very near the bed, (5.9) can be approximated by

Kv

H
∂ zS + ws S = −J0

(5.10)

Neglecting stratification effects and using the results of Chapter 4, the near bed diffusivity
is approximately

Kv

H
= Ko q

l

H
≅ u*κz

(5.11)

Introducing (5.11) into (5.10) gives

∂ zS +
R

z
S = −

R

z

Jo

ws

(5.12)

where

R =
ws

u*κ
(5.13)

is the Rouse parameter. The solution of (5.12) is



S = −
Jo

ws

+
C

z
R

(5.14)

The constant of integration is evaluated using

S = Seq : z = zeq and Jo = 0 (5.15)

which sets the sediment concentration to an equilibrium value, defined just above the bed
under not net flux condition. Using (5.15), equation (5.14) becomes

S =
zeq

z

 

 
 
 

R

Seq −
Jo

ws

(5.16)

For nonequilibrium conditions, the net flux is given by evaluating (5.16) at the
equilibrium level

Jo = ws Seq − Sne( ) (5.17)

where Sne is the actual concentration at the reference equilibrium level.

Equation (5.17) clearly indicates that when the near bed sediment concentration is less
than the equilibrium value a net flux from the bed into the water column occurs.
Likewise when the concentration exceeds equilibrium, a net flux to the bed occurs. For
the relationship (5.17) to be useful in a numerical model, the bed flux must be expressed
in terms of the layer mean concentration. For a three-dimensional application, (5.16) can
be integrated over the bottom model layer to give

Jo = ws Seq − S( ) (5.18)

where

Seq =
ln ∆zeq

−1( )
∆zeq

−1 −1( )
Seq : R = 1

Seq =
∆zeq

−1( )
1− R

−1( )
1 − R( ) ∆zeq

−1 −1( )
Seq : R ≠ 1

(5.19)

defines an equivalent layer mean equilibrium concentration in terms of the near bed
equilibrium concentration. The corresponding quantities in the numerical solution
bottom boundary condition (3.6) are



wr Sr = ws Seq

Pd ws = ws

(5.20)

If the dimensionless equilibrium elevation, zeq exceeds the dimensionless layer thickness,
(5.19) can be modified to

Seq =
ln M∆zeq

−1( )
M∆zeq

−1 −1( )
Seq : R = 1

Seq =
M∆zeq

−1( )
1− R

−1( )
1 − R( ) M∆zeq

−1 −1( )
Seq : R ≠ 1

(5.21)

where the over bars in (5.18) and (5.20) implying an average of the first M layers above
the bed.

For two-dimensional, depth averaged model application, a number of additional
consideration are necessary. For depth average modeling, the equivalent of (5.9) is

Kv

H
∂ zS + ws S = −Jo 1− z( ) (5.22)

Neglecting stratification effects and using the results of Chapter 4, the diffusivity is

Kv

H
= Ko q

l

H
≅ u*κz 1 − z( )λ (5.23)

Introducing (5.23) into (5.22) gives

∂ zS +
R

z 1 − z( )λ S = −
R 1− z( )1− λ

z

Jo

ws

(5.24)

A close form solution of (5.24) is possible for λ equal to zero. Although the resulting
diffusivity is not as reasonable as the choice of λ equal to one, the resulting vertical
distribution of sediment is much more sensitive to the near bed diffusivity distribution
than the distribution in the upper portions of the water column. For λ equal to zero, the
solution of (5.23) is

S = − 1 −
Rz

1+ R( )

 

 
  

 
 Jo

ws

+
C

z R

(5.25)

Evaluating the constant of integration using (5.15) gives



S =
zeq

z

 
 

 
 

R

Seq − 1−
Rz

1 + R( )

 

 
  

 
 Jo

ws

(5.26)

For nonequilibrium conditions, the net flux is given by evaluating (5.26) at the
equilibrium level

Jo = ws

1 + R( )
1+ R 1 − zeq( )

 

 
 

 

 
 Seq − Sne( )

(5.27)

where Sne is the actual concentration at the reference equilibrium level. Since zeq is on
the order of the sediment grain diameter divided by the depth of the water column, (5.27)
is essentially equivalent (5.17). To obtain an expression for the bed flux in terms of the
depth average sediment concentration, (5.26) is integrated over the depth to give

Jo = ws

2 1 + R( )
2 + R 1 − zeq( )

 

 
 

 

 
 Seq − S( )

(5.28)

where

Seq =
ln zeq

−1( )
zeq

−1 −1( )
Seq : R =1

Seq =
zeq

R−1 −1( )
1 − R( ) zeq

−1 −1( )
Seq : R ≠1

(5.29)

The corresponding quantities in the numerical solution bottom boundary condition (3.6)
are

wr Sr = ws

2 1+ R( )
2 + R 1 − zeq( )

 

 
 

 

 
 Seq

Pdws =
2 1+ R( )

2 + R 1 − zeq( )

 

 
 

 

 
 ws

(5.30)

When multiple sediment size classes are simulated, the equilibrium concentrations given
by (5.19), (5.21), and (5.29) are adjusted by multiplying by their respective sediment
volume fractions in the surface layer of the bed.

The specification of the water column-bed flux of noncohesive sediment has been
reduced to specification of the near bed equilibrium concentration and it corresponding
reference distance above the bed. Garcia and Parker (1991) evaluated seven
relationships, based on combinations of analysis and experiment correlation, for



determining the near bed equilibrium concentration as well as proposing a new
relationship. All of the relationships essential specify the equilibrium concentration in
terms of hydrodynamic and sediment physical parameters

Seq = Seq d ,ρs ,ρw ,ws ,u*,ν( ) (5.31)

including the sediment particle diameter, the sediment and water densities, the sediment
settling velocity, the bed shear velocity, and the kinematic molecular viscosity of water.
Garcia and Parker concluded that the representations of Smith and McLean (1977) and
Van Rijn (1984) as well as their own proposed representation perform acceptably when
tested against experimental and field observations.

Smith and McLean's formula for the equilibrium concentration is

Seq = ρs

0.65γ oT

1 + γ oT

(5.32)

where γo is a constant equal to 2.4E-3 and T is given by

T =
τb − τcs

τcs

=
u*

2 − u*cs
2

u*cs

2

(5.33)

where τb is the bed stress and τcs is the critical Shields stress. The use of Smith and
McLean's formulation requires that the critical Shields stress be specified for each
sediment size class. Van Rijn's formula is

Seq = 0.015ρs

d

zeq

* T 3/ 2Rd

−1/ 5 (5.34)

where zeq* ( = Hzeq ) is the dimensional reference height and Rd is a sediment grain
Reynolds number

Rd = g
ρs

ρ
−1

 

 
  

 
 d

 

 
  

 
 

1/ 2

d

ν

(5.35)

When Van Rijn's formula is select for use in EFDC, the critical Shields stress in internally
calculated using relationships from Van Rijn (1984). Van Rijn suggested setting the
dimensional reference height to three grain diameters. In the EFDC model, the user
specifies the reference height as a multiple of the largest noncohesive sediment size class
diameter.

Garcia and Parker's general formula for multiple sediment size classes is



S jeq = ρs

A λZj( )
5

1+ 3.33A λZ( )
5( )

(5.36)

Zj =
u*

wsj

Rdj

3 / 5FH

(5.37)

FH =
d j

d50

 

 
  

 
 

1 / 5 (5.38)

λ =1 +
σφ

σ φo

λo −1( )
(5.39)

where A is a constant equal to 1.3E-7, d50 is the median grain diameter based on all
sediment classes, λ is a straining factor, FH is a hiding factor and σφ is the standard
deviation of the sedimentological phi scale of sediment size distribution. Garcia and
Parker's formulation is unique in that it can account for armoring effects when multiple
sediment classes are simulated. For simulation of a single noncohesive size class, the
straining factor and the hiding factor are set to one. The EFDC model has the option to
simulate armoring with Garcia and Parker's formulation. For armoring simulation, the
current surface layer of the sediment bed is restricted to a thickness equal to the
dimensional reference height.

6. Cohesive Sediment Settling, Deposition and Resuspension

The settling of cohesive inorganic sediment and organic particulate material is an
extremely complex process. Inherent in the process of gravitational settling is the process
of flocculation, where individual cohesive sediment particles and particulate organic
particles aggregate to form larger groupings or flocs having settling characteristics
significantly different from those of the component particles (Burban et al., 1989,1990;
Gibbs, 1985; Mehta et al., 1989). Floc formation is dependent upon the type and
concentration of the suspended material, the ionic characteristics of the environment, and
the fluid shear and turbulence intensity of the flow environment. Progress has been made
in first principles mathematical modeling of floc formation or aggregation, and
disaggregation by intense flow shear (Lick and Lick, 1988; Tsai, et al., 1987). However,
the computational intensity of such approaches precludes direct simulation of flocculation
in operational cohesive sediment transport models for the immediate future.

An alternative approach, which has met with reasonable success, is the parameterization
of the settling velocity of flocs in terms of cohesive and organic material fundamental
particle size, d; concentration, S; and flow characteristics such as vertical shear of the
horizontal velocity, du/dz, shear stress, Avdu/dz, or turbulence intensity in the water
column or near the sediment bed, q. This has allowed semi-empirical expressions having
the functional form



Wse = Wse d ,S,
du

dz
,q

 
 
  

 
 

(6.1)

to be developed to represent the effective settling velocity. A widely used empirical
expression, first incorporated into a numerical by Ariathurai and Krone (1976), relates the
effective settling velocity to the sediment concentration:

ws = wso

S

So

 

 
  

 
 

a (6.2)

with the o superscript denoting reference values. Depending upon the reference
concentration and the value of α, this equation predicts either increasing or decreasing
settling velocity as the sediment concentration increases. Equation (6.2) with user
defined base settling velocity, concentration and exponent is an option in the EFDC
model. Hwang and Metha (1989) proposed

ws =
aSn

S 2 + b2( )
m

(6.3)

based on observations of settling at six sites in Lake Okeechobee. This equation has a
general parabolic shape with the settling velocity decreasing with decreasing
concentration at low concentrations and decreasing with increasing concentration at high
concentration. A least squares for the paramters, a, m, and n, in (6.3) was shown to agree
well with observational data. Equation (6.3) does not hav a dependence on flow
characteristics, but is based on data from an energetic field condition having both currents
and high frequency surface waves. A generalized form of (6.3) can be selected as an
option in the EFDC model.

Ziegler and Nisbet, (1994, 1995) proposed a formulation to express the effective settling
as a function of the floc diameter, df

ws = ad f

b (6.4)

with the floc diameter given by:

d f =
α f

S τ xz
2 + τ xz

2

 

 
 

 

 
 

1/ 2

(6.5)

where S is the sediment concentration, αf is an experimentally determined constant and

τxz and τyz are the x and y components of the turbulent shear stresses at a given position
in the water column. Other quantities in (6.4) have been experimentally determined to fit
the relationships:



a = B1 S τ xz

2 + τ xz

2( )
−0.85 (6.6)

b = −0.8 − 0.5log S τ xz

2 + τ xz

2 − B2( ) (6.7)

where B1 and B2 are experimental constants. This formulation is also an option in the
EFDC model.

A final settling option in EFDC is based on that proposed by Shrestha and Orlob (1996).
The formulation in EFDC has the form

ws = Sα exp −4.21 + 0.147G( )

α = 0.11 + 0.039G

(6.8)

where

G = ∂ zu( )2
+ ∂ zv( )2 (6.9)

is the magnitude of the vertical shear of the horizontal velocity. It is noted that all of
these formulations are based on specific dimensional units for input parameters and
predicted settling velocities and that appropriate unit conversion are made internally in
their implementation in the EFDC model.

Water column-sediment bed exchange of cohesive sediments and organic solids is
controlled by the near bed flow environment and the geomechanics of the deposited bed.
Net deposition to the bed occurs as the flow-induced bed surface stress decreases. The
most widely used expression for the depositional flux is:

Jo

d =

−wsSd

τ cd − τ b

τ cd

 

 
  

 
 = −wsTdSd : τ b ≤τ cd

0 : τ b ≥τ cd

 

 

  

 

 
 

(6.10)

where τb is the stress exerted by the flow on the bed, τcd is a critical stress for deposition
which depends on sediment material and floc physiochemical properties (Mehta et al.,
1989) and Sd is the near bed depositing sediment concentration. The critical deposition
stress is generally determined from laboratory or in situ field observations and values
ranging form 0.06 to 1.1 N/m**2 have been reported in the literature. Given this wide
range of reported values, in the absence of site specific data the depositional stress and is
generally treated as a calibration parameter. The depositional stress is an input parameter
in the EFDC model.



Since the near bed depositing sediment concentration in (6.10) is not directly calculated,
the procedures of Chapter 5 can be applied to relate the the near bed depositional
concentration to the bottom layer or depth averge concentration. Using (5.14) the near
bed concentration during times of deposition can be determined in terms of the bottom
layer concentration for three-dimensional model applications. Inserting (6.10) into (5.14)
and evaluating the constant at a near bed depositional level gives

S = Td + 1 − Td( )
zd

R

z
R

 

 
  

 
Sd

(6.11)

Integrating (6.11) over the bottom layer gives

Sd = Td +
ln ∆zd

−1( )
∆zd

−1 −1( )
1 − Td( )

 

 
 

 

 
 

−1

S : R =1

Sd = Td +
∆zeq

−1( )
1− R

−1( )
1 − R( ) ∆zd

−1 −1( )
1− Td( )

 

 

 
 

 

 

 
 

−1

S : R ≠1

(6.12)

The corresponding quantities in the numerical solution bottom boundary condition (3.6)
are

Pdws = Td +
ln ∆zd

−1( )
∆zd

−1 −1( )
1 − Td( )

 

 
 

 

 
 

−1

ws : R =1

Pd ws = Td +
∆zeq

−1( )
1− R

−1( )
1− R( ) ∆zd

−1 −1( )
1 − Td( )

 

 

 
 

 

 

 
 

−1

ws : R ≠ 1

(6.13)

For depth averaged model application, (6.10) is combined with (5.25) and the constant of
integration is evaluated at a near bed depositional level to give

S = 1−
Rz

1 + R( )

 

 
  

 
 Td Sd + 1 − 1 −

Rzd

1 + R( )

 

 
  

 
 Td

 

 
 

 

 
 Sd

zd
R

z R

(6.14)

Integrating (6.14) over the depth gives

Sd =
2 + R 1 − zd( )

2 1+ R( )

 

 
  

 
 Td +

ln zd
−1( )

zd

−1
−1( )

1 −
1+ R 1− zd( )

1+ R( )

 

 
  

 
 Td

 

 
 

 

 
 

 

 
 

 

 
 

−1

S : R = 1

Sd =
2 + R 1− zd( )

2 1 + R( )

 

 
  

 
 Td +

zd
R−1 −1( )

1 − R( ) zd

−1
−1( )

1 − 1−
Rzd

1 + R( )

 

 
  

 
 Td

 

 
 

 

 
 

 

 
 

 

 
 

−1

S : R ≠1

(6.15)



The corresponding quantities in the numerical solution bottom boundary condition (3.6)
are

Pdws =
2 + R 1− zd( )

2 1 + R( )

 

 
  

 
 Td +

ln zd
−1( )

zd

−1
−1( )

1−
1 + R 1 − zd( )

1 + R( )

 

 
  

 
 Td

 

 
 

 

 
 

 

 
 

 

 
 

−1

ws : R =1

Pd ws =
2 + R 1 − zd( )

2 1 + R( )

 

 
  

 
 Td +

zd
R−1 −1( )

1− R( ) zd

−1
−1( )

1− 1 −
Rzd

1+ R( )

 

 
  

 
 Td

 

 
 

 

 
 

 

 
 

 

 
 

−1

ws : R ≠ 1

(6.16)

It is noted that the assumptions used to arrive at the relationships, (6.12) and (6.15) are
more teneous for cohesive sediment than the similar relationships for noncohesive
sediment. The settling velocity for cohesive sediment is highly concentration dependent
and the use of a constant settling velocity to arrive at (6.12) and (6.15) is questionable.
The specification of an appropriate reference level for cohesive sediment is difficult. One
possibility is to relate the reference level to the floc diameter using (6.5). An alternative
is to set the reference level to a laminar sublayer thickness

zd =
ν S( )
Hu*

(6.17)

where ν(S) is a sediment concentration dependent kinematic viscosity and the water depth
is include to nondimensionlize the reference level. A number of investigators, including
Mehta and Jiang (1990) have presented experimental results indicating that at high
sediment concentrations, cohesive sediment-water mixtures behave as high viscosity
fluids. Mehta and Jain's results indicate that a sediment concentration of 10,000 mg/L
results in a viscosity ten time that of pure water and that the viscosity increases
logrithmically with increasing mixture density. Use of the relationships (6.12) and (6.16)
is optional in the EFDC model. When they are used, the reference height is set using
(6.17) with the viscosity determined using Mehta and Jain's experimental relationship
between viscosity and sediment concentration. To more fully address the deposition
prediction problem, a nested sediment, current and wave boundary layer model based on
the near bed closure presented in Chapter 4 is under development.

Cohesive bed erosion occurs in two distinct modes, mass erosion and surface erosion.
Mass erosion occurs rapidly when the bed stress exerted by the flow exceeds the depth

varying shear strength, τs, of the bed at a depth, Hme, below the bed surface. Surface
erosion occurs gradually when the flow-exerted bed stress is less than the bed shear

strength near the surface but greater than a critical erosion or resuspension stress, τce,
which is dependent on the shear strength and density of the bed. A typical scenario under
conditions of accelerating flow and increasing bed stress would involve first the
occurrence of gradual surface erosion, followed by a rapid interval of mass erosion,
followed by another interval of surface erosion. Alternately, if the bed is well
consolidated with a sufficiently high shear strength profile, only gradual surface erosion



would occur. Transport into the water column by mass or bulk erosion can be expressed
in the form

Jo

r
= wr Sr =

mme τ s ≤τ b( )
Tme

(6.18)

where Jo is the erosion flux, the product wrSr represents the numerical boundary condition

(3.6), mme is the dry sediment mass per unit area of the bed having a shear strength, τs,

less than the flow-induced bed stress, τb, and Tme is a somewhat arbitrary time scale for
the bulk mass transfer. The time scale can be taken as the numerical model integration
time step (Shrestha and Orlob, 1996). Observations by Hwang and Mehta (1989) have
indicated that the maximum rate of mass erosion is on the order of 0.6 gm/s-m**2 which
provides an means of estimating the transfer time scale in (4.10). The shear strenght of
the cohesive sediment bed is generally agreed to be a linear function of the bed bulk
density (Metha et al., 1982; Villaret and Paulic, 1986; Hwang and Mehta, 1989)

τ s = as ρb + bs (6.19)

For the shear strength in N/m**2 and the bulk density in gm/cm**3, Hwang and Mehta
(1989) give as and bs values of 9.808 and -9.934 for bulk density greater than 1.065
gm/cm**3. The EFDC model currently implements Hwang and Mehta's relationship, but
can be readily modified to incorporated other functional relationships.

Surface erosion is generally represented by relationships of the form

Jo

r = wr Sr =
dme

dt

τ b −τ ce

τ ce

 

 
  

 
 

α

: τ b ≥τ ce (6.20)

or

Jo

r = wr Sr =
dme

dt
exp −β

τ b −τ ce

τ ce

 

 
  

 
 

γ 

 
 

 

 
 : τ b ≥ τ ce (6.21)

where dme/dt is the surface erosion rate per unit surface area of the bed and τce is the
critical stress for surface erosion or resuspension. The critical erosion rate and stress and
the parameters α, β, and γ are generally determined from laboratory or in situ field
experimental observations. Equation (6.20) is more appropriate for consolidated beds,
while (6.21) is appropriate for soft partially consolidated beds. The base erosion rate and
the critical stress for erosion depend upon the type of sediment, the bed water content,
total salt content, ionic species in the water, pH and temperature (Mehta, et al., 1989) and
can be measured in laboratory and sea bed flumes.

The critical erosion stress is related to but generally less than the shear strength of the
bed, which in turn depends upon the sediment type and the state of consolidation of the



bed. Experimentally determined relationships between the critical surface erosion stress
and the dry density of the bed of the form

τce = cρs

d (6.22)

have been presented (Mehta, et al., 1989). Hwang and Mehta (1989) proposed the
relationship

τce = a ρb − ρl( )
b

+ c (6.23)

between the critical surface erosion stress and the bed bulk density with a, b, c, and ρl

equal to 0.883, 0.2, 0.05, and 1.065, respectively for the stress in N/m**2 and the bulk
density in gm/cm**3. Considering the relationship between dry and bulk density

ρd = ρs

ρb − ρw( )
ρs − ρw( )

(6.24)

equations (6.22) and (6.23) are consistent. The EFDC model allow for a user defined
constant critial stress for surface erosion or the use of (6.23). Alternate predictive
expression can be readily incorporated into the model.

Surface erosion rates ranging from 0.005 to 0.1 gm/s-m**2 have been reported in the
literature, and it is generally accepted that the surface erosion rate decreases with
increasing bulk density. Based on experimental observations, Hwang and Mehta (1989)
proposed the relationship

log10

dme

dt

 
 

 
 = 0.23exp

0.198

ρb −1.0023

 

 
  

 
 

(6.25)

for the erosion rate in mg/hr-cm**2 and the bulk density in gm/cm**3. The EFDC model
allow for a user defined constant surface erosion rate or predicts the rate using (6.25).
Alternate predictive expression can be readily incorporated into the model. The use of
bulk density functions to predict bed strength and erosion rates in turn requires the
prediction of time and depth in bed variations in bulk density which is related to the water
and sediment density and the bed void ratio by

ρb =
ε

1 + ε

 
 

 
 ρw +

1

1 + ε

 
 

 
 ρs

(6.26)

Selection of the bulk density dependent formulations in the EFDC model requires
implmentation of a bed consolidation simulation to predict the bed void ratio as discussed
in the following chapter.

7. Sediment Bed Geomechanical Processes



This chapter describes the representation of the sediment bed in the EFDC model. To
make the information presented self contained, the derivation of mass balance equations
and comparison with formulations used in other models is also presented.

Consider a sediment bed represented by discrete layers of thickness Bk, which may be
time varying. The conservation of sediment and water mass per unit horizontal area in
layer k is given by:

∂t

ρs Bk

1+ εk

 

 
  

 
 = Js: k− − Js:k+

(7.1)

∂t

ρwεkBk

1+ εk

 

 
  

 
 = Jw:k − − Jw:k+

(7.2)

where ε is the void ratio, ρs and ρw are the sediment and water density and Js and Jw are
the sediment and water mass flux with k- and k+ defining the bottom and top boundaries,
respectively of layer k. The mass flux is define as positive in the vertical direction.
Assuming sediment and water to be incompressible (7.1) and (7.2) can be written as:

∂t

Bk

1+ εk

 

 
  

 
 =

Js: k−

ρs

−
Js:k+

ρs

(7.3)

∂t

εkBk

1+ εk

 

 
  

 
 =

Jw: k−

ρw

−
Jw:k+

ρw

(7.4)

For the bed layer, k=ka, adjacent to the water column the sediment and water flux are:

Js:ka+ = Jsb (7.5)

Jw: ka+ = ρwqka + + εka

ρw

ρs

max Jsb, 0( )+ εb

ρw

ρs

min Jsb,0( ) (7.6)

where Jsb is the net sediment mass flux from the bed to the water column, qw is the
specific discharge of water due to bed consolidation, and εb is the water column void ratio
at the water column-sediment bed interface. The last two terms in (7.6) represent
entrainment of bed water into the water column during sediment resuspension and
entrainment of water column water into the bed during deposition, respectively. At bed
layer interfaces not adjacent to the water column, the water flux is:

Jw: k+ = ρwqk+ : k ≠ ka

Jw:k − = ρwqk−

(7.7)



The sediment flux at bed layer interfaces not adjacent to the water column is either
specified or determined in the course of solving the sediment mass conservation equation.
Combining equations (7.1) and (7.5) and equations (7.2), (7.6), and (7.7) gives the mass
conservation equations

∂t

ρs Bka

1+ εka

 

 
  

 
 = Js:ka− − Jsb

(7.8)

∂t

ρwεka Bka

1 + εka

 

 
  

 
 = ρw qka− − qka+( )−

ρw

ρs

εka max Jsb ,0( )+ εb min Jsb,0( )( )
(7.9)

for the bed layer adjacent to the water column. Restating (7.1) and combining equations
(7.2) and (7.7) gives the mass conservation equations

∂t

ρs Bk

1+ εk

 

 
  

 
 = Js: k− − Js:k+

(7.10)

∂t

ρwεkBk

1+ εk

 

 
  

 
 = ρw qk− − qk+( )

(7.11)

for layers not adjacent to the water column.

Four approaches for the solution of the mass conservation equations (7.8) through (7.11)
have been previously utilized. The solution approaches, hereafter referred to as solution
levels, increase in complexity and physical realism and will be briefly summarized. The
first level or simplest approach assumes specified time-constant layer thicknesses and
void ratios with the left sides of (7.8) through (7.11) being identically zero. Sediment
mass flux at all layer interfaces are then identical to the net flux from the bed to the water
column. Bed representations at this level, as exemplified by the RECOVERY model
(Boyer, et al., 1994), typically omit the water mass conservation equations. However, it
is noted that the water mass conservation is ill posed unless either q1-, the specific
discharge at the bottom of the deepest layer or qka+, the specific discharge at the top of
the water column adjacent layer, is specified. If q1- is set to zero, qka+ is then required to
exactly cancel the entrainment terms is (7.9).

The second level of bed mass conservation representation assumes specified time
invariant layer thicknesses. The sediment mass conservation equations (7.8) and (7.10)
for the water column adjacent layer and the underlying layers become

Bka∂ tSka = Js:ka− − Jsb (7.12)

Bk∂tSk = Js: k− − Js:k+ (7.13)

where



Sk =
ρs

1 + εk

(7.14)

is the sediment concentration (mass of sediment per volume of sediment-water mixture).
Considering a two layer bed (ka = 2) and noting that J1+ = J2-, readily reveals that the
formulation is ill posed unless the internal sediment flux is specified or appropriately
paramterized. A parameterization which is employed for the constant bed layer thickness
option in the WASP5 model (Ambrose, et al., 1993) is

Js: k− = −wb:k− Sk

Js:k + = −wb:k+ Sk +1

wb: k+ = wb: k+1−

(7.15)

where wb is a specified burial velocity. The mass balance equations (7.12) and (7.13)
using (7.15) are properly posed and can be solved for the sediment concentration. In the
event that the sediment concentration in the water column adjacent layer becomes
negative, the layer is eliminated and the underlying layer become water column adjacent.
The solution of (7.12) and (7.13) for the sediment concentration then allows the void ratio
to be determined from (7.14). The left sides of the water mass conservation equations
(7.9) and (7.11) are thus known and these equations are more appropriately written as

qka + − qka − = −Bka∂t

εka

1 + εka

 

 
  

 
 −

1

ρs

εka max Jsb,0( )+ εb min Jsb, 0( )( )
(7.16)

qk + − qk − = −Bk∂ t

εka

1 +ε ka

 

 
  

 
 

(7.17)

The determination of the specific discharges using (7.16) and (7.17) can be viewed is
either ill posed or physically inconsistent. As shown for the first level approach, the
solution of (7.16) and (7.17) is ill posed unless either q1-, the specific discharge at the
bottom of the deepest layer or qka+, the specific discharge at the top of the water column
adjacent layer must be independently specified. If q1- is specified and the internal specific
discharges determined from (7.17), qka+ is then required to partially cancel the
entrainment terms is (7.16). As will be subsequently shown, the specific discharges can
be dynamically determined using Darcy's law formulated in terms of void ratio.
However, the specific discharges determined using Darcy's law and the known void ratios
are not guaranteed to satisfy (7.16) and (7.17) and the level two formulation is
dynamically inconsistent with respect to water mass conservation in the sediment bed.
The constant bed layer thickness option in the WASP5 ignores this problem entirely by
not considering the water mass balance and hence neglecting pore water advection of
dissolved contaminants.



The third level of bed mass conservation representation assumes specified time invariant
layer void ratios. The sediment mass conservation equations (7.8) and (7.10) for the
water column adjacent layer and the underlying layers become

Ska∂t Bka = Js:ka− − Jsb (7.18)

Sk∂tBk = Js: k− − Js:k+ (7.19)

where the sediment concentration Sk defined by (7.14) is time invariant. This level
requires independent specification of the bottom sediment flux, Js:ka-, in the water column
adjacent layer which allows (7.18) to be solved for the time varying water column
adjacent layer thickness. The solution of (7.19) then requires specification of either the
layer bottom sediment flux Js:k- or dBk/dt in underlying layers. The water mass
conservation equations (7.9) and (7.11) for this level of representation are:

qka + − qka − = −
εka

1 + εka

 

 
  

 
 ∂ tBka −

1

ρs

εka max Jsb,0( )+ εb min Jsb, 0( )( )
(7.20)

qk − − qk + =
εk

1+ εk

 

 
  

 
 ∂tBk

(7.21)

where the right sides are known form the solution of the sediment mass conservation
equations. The solution of (7.20) requires specification of either the bottom or top
specific discharges. Subsequently (7.21) can be solved successively downward for the
layer bottom specific discharges.

The variable bed layer thickness option in the WASP5 model (Ambrose, et al., 1993)
exemplifies the third level of bed representation. Specifically, the thickness of the water
column adjacent layer is allowed to vary in time, while the thicknesses of the underlying
layers remain constant, with equations (7.18) and (7.19) becoming

Ska∂t Bka = Js:ka− − Jsb (7.22)

Js:k − = Js:k+ (7.23)

The periodic time variation specified for the water column adjacent layer bottom flux is:

Js:ka− = 0 : to ≤ t ≤ to + N −1( )∆t

Js:ka− = Jsbdt
t o

to + N∆t

∫ : to + N −1( )∆t ≤ t ≤ to + N∆t

(7.24)

where ∆t is the standard water time step and N∆t is the sediment compaction time. This
results in the thickness of the water column adjacent layer periodically returning to its
initial value at time intervals of N∆t unless the thickness becomes negative due to net



resuspension. In that event, the underlying layer becomes the water column adjacent
layer. The water mass conservation (7.21) for layers not adjacent to the water column
becomes

qk + = qk− = q1− : k ≠ ka (7.25)

indicating that all internal specific discharges are equal a specified specific discharge at
the bottom of layer 1. Given the solution for the time variation of the water column
adjacent thickness and bottom specific discharge, (7.20) can be solved for the specific
discharge at the top of the layer.

The constant porosity bed option in EFDC is also a level three approach. In EFDC, the
internal sediment fluxes are set to zero and the change in thickness of the water column
adjacent layer is determined directly using (7.18) while the underlying layers have time
invariant thicknesses. As a result, the internal water specific discharges are set to zero
and the water entrainment and expulsion in the water column adjacent layer are
determined directly from (7.20). The EFDC model is configured to have a user specified
maximum number of sediment bed layer. A the start of a simulation, the number of
layers containing sediment at a specific horizontal location is specified. Under continued
deposition, a new water column layer is created when the thickness of the current layer
exceeds a user specified value. If the current water column adjacent layer's index is equal
to the maximam number of layers, the bottom two layers are combined and the remaining
layers renumbered before addition of the new layer. Under continued resuspension, the
layer underlying the current water column adjacent layer becomes the new adjacent layer
when all sediment is resuspended form the current layer.

The fourth level of bed representation accounts for bed consolidation by allowing the
layer void ratios and thicknesses to vary in time. The simplest and most elegant
formulations at this level utilize a Lagrangian approach for sediment mass conservation in
layers not adjacent to the water column. The Lagrangian approach requires that the
sediment mass per unit horizontal area be time invariant and without loss of generality the
internal sediment fluxes are set to zero in layers not adjacent to the bed. Consistent with
these requirements, (7.8) and (7.10) become

∂t

ρs Bka

1+ εka

 

 
  

 
 = −Jsb

(7.26)

∂t

ρs Bk

1+ εk

 

 
  

 
 = 0 : k ≠ ka

(7.27)

These equations are readily integrated to give

ρs Bka

1 +ε ka

 

 
  

 
 

n +1

=
ρs Bka

1 + εka

 

 
  

 
 

n

− ∆ t Jsb

n+1 / 2
(7.28)



ρs Bk

1 +ε k

 

 
  

 
 

n+1

=
ρs Bk

1 +ε k

 

 
  

 
 

n

: k ≠ ka

(7.29)

where n and n+1 denote the old and new times, and ∆t is the time interval between n and
n+1. The Lagrangian approach for sediment mass conservation also requires that the
number of bed layers vary in time. Under conditions of continued deposition, a new
water column adjacent layer would be added when either the thickness, void ratio or mass
per unit area of the current water column adjacent layer reaches a predefined value.
Under conditions of continued resuspension, the bed layer immediately under the current
water column adjacent layer would become the new water column adjacent layer when
the entire sediment mass of the current layer has been resuspended. The water mass
conservation equations remain unchanged from their general forms give by (7.9) and
(7.10) which for convenience are restated as

∂t

ρwεka Bka

1 + εka

 

 
  

 
 = ρw qka− − qka+( )−

ρw

ρs

εka max Jsb ,0( )+ εb min Jsb,0( )( )
(7.30)

∂t

ρwεkBk

1+ εk

 

 
  

 
 = ρw qk − − qk +( ) : k ≠ ka

(7.31)

At the fourth and most realistic level of bed representation, three approaches can be used
to represent bed consolidation. Two of the approaches are semi-empirical with the first
assuming that the void ratio of a layer decreases with time. A typical relationship which
is used for the simple consolidation option in the EFDC model is

ε = εm + εo − εm( )exp −α t − to( )( ) (7.32)

where εo is the void ratio at the mean time of deposition, to, εm is the ultimate minimum
void ratio corresponding to complete consolidation, and α is an empirical or experimental
constant. Use of (7.32) in the EFDC model involves specifying the depositional and
ultimate void ratios and the rate constant. The actual calculation involves using the initial
void ratios to determine the deposition time to, after which (7.32) is used to update the
void ratios as the simulation progresses. After equation (7.32) is used to calculate the
new time level void ratios, the results of equations (7.28) and (7.29) provide the new
layer thicknesses. The water conservation equations (7.30) and (7.31) can then be solved
using

qka +

n+1/ 2 = qka −

n+1/ 2 −
1

∆ t

εkBk

1+ εk

 

 
  

 
 

n+1

+
1

∆ t

εk Bk

1+ εk

 

 
  

 
 

n

−
1

ρs

εka max Jsb, 0( )+ εb min Jsb,0( )( )n+1 / 2

(7.33)



qk +

n+1/ 2 = qk−

n+1/ 2 −
1

∆ t

εkBk

1+ εk

 

 
  

 
 

n+1

+
1

∆ t

εk Bk

1+ εk

 

 
  

 
 

n

: k ≠ ka

(7.34)

to determine the water specific discharges, provided that the specific discharge q1-, at the
bottom of layer 1 is specified. When this option is specified in the EFDC model, the
specific discharge at bottom of the bottom sediment layer is set to zero. Layers are added
and deleted in the manner previously described for EFDC's constant porosity option.

The second semi-empirical approach assumes that the vertical distribution of the bed bulk
density or equivalently the, void ratio at any time is given by a self-similar function of
vertical position, bed thickness and fixed surface and bottom bulk densities or void ratios.
Functionally this equivalent to

ε = V z, BT ,εka,ε1( ) (7.35)

where V represents the function, z is a vertical coordinate measured upward from the
bottom of the lowest layer, and BT is the total thickness of the bed. This approach is used
in the original HSTM model (Hayter and Mehta, 1983), the new HSCTM model (Hayter
et al., 1998) and is an option in the CE-QUAL-ICM/TOXI model (Dortch, et al., 1998).
This approach also appears to be employed in the SED2D-WES model (Letter et al.,
1998) and related models (Shrestha and Orlob, 1996). The determination of the new time
level layer thicknesses and void ratios requires an iterative solution of equations (7.28),
(7.29) and (7.35). The solution is completed using (7.33) and (7.34) to determine the
water specific discharges.

The third and most realistic approach is to dynamically simulate the consolidation of the
bed. The consolidation equations are derived by expanding the left sides of (7.30) and
(7.31) giving

Bka

1 +ε ka

 

 
  

 
 ∂tεka + εka∂t

Bka

1+ εka

 

 
  

 
 = qka− − qka+

−
1

ρs

εka max Jsb ,0( )+ εb min Jsb,0( )( )
(7.36)

Bka

1 +ε k

 

 
  

 
 ∂tεk + εk∂ t

Bk

1 + εka

 

 
  

 
 = qk− − qk+ : k ≠ ka

(7.37)

Using (7.26) and (7.27), equations (7.36) and (7.37) become

Bka

1 +ε ka

 

 
  

 
 ∂tεka = qka − − qka+ +

1

ρs

εka − εb( )min
Jsb

ρs

,0
 

 
  

 
 

(7.38)



Bka

1 +ε k

 

 
  

 
 ∂tεk = qk − − qk+ : k ≠ ka

(7.39)

The specific discharges in (7.38) and (7.39) are determined using the Darcy equation

q = −
K

gρw

∂ zu
(7.40)

where K is the hydraulic conductivity and u is the excess pore pressure defined as the
difference between the total pore pressure ut, and the hydrostatic pressure uh.

u = ut − uh (7.41)

The total pore pressure is defined as the difference between the total stress σ and effective
stress σe.

ut = σ − σe (7.42)

The total stress and hydrostatic pressure are given by

σ = pb + g
ε

1 + ε

 
 

 
 ρw +

1

1 + ε

 
 

 
 ρs

 
 

 
 

zb − z( )
(7.43)

uh = pb + gρw zb − z( ) (7.44)

where pb is the water column pressure at the bed zb. Solving for the excess pore pressure
using (7.41) through (7.44) gives

u = gρw

ρs

ρw

−1
 

 
  

 
 1

1 + ε

 
 

 
 zb − z( )−σ e

(7.45)

which is introduced into (7.40) to give

q =
K

gρw

∂ zσ e +
ρs

ρw

−1
 

 
  

 
 K

1 + ε

 
 

 
 

(7.46)

or

q =
K

gρw

dσ e

dε

 
 

 
 ∂zε +

ρs

ρw

−1
 

 
  

 
 K

1 + ε

 
 

 
 

(7.47)

where dε/dσc is a coefficient of compressibility.



For consistency with the Lagrangian representation of sediment mass conservation, a new
vertical coordinate ζ, defined by

dζ

dz
=

1

1 + ε

(7.48)

is introduced. The discrete form of (7.48) is

ζ k + −ζ k − =
zk+ − zk −

1 + εk

=
Bk

1 + εk

= ∆ζ:k

(7.49)

Introducing (7.48) into (7.47) gives

q = λ
K

1 + ε

 
 

 
 ∂ζε +

ρs

ρw

−1
 

 
  

 
 K

1 + ε

 
 

 
 

(7.50)

where

λ =
1

gρw

dσe

dε
(7.51)

is a compressibility length. Introducing (7.49) and (7.50) into (7.38) and (7.39) gives

∆ζ :ka∂tε ka +
ρs

ρw

−1
 

 
  

 
 

K

1+ ε

 
 

 
 

ka+

−
K

1 + ε

 
 

 
 

ka −

 

 
  

 

+ λ
K

1 + ε

 
 

 
 

∂
ζ
ε

 

 
 
 

ka+

− λ
K

1+ ε

 
 

 
 

∂
ζ
ε

 

 
 
 

ka−

= εka − εb( )min
Jsb

ρs

,0
 

 
  

 
 

(7.52)

for the surface adjacent layer and

∆
ζ :k

∂ tεk +
ρs

ρw

−1
 

 
  

 
 K

1 + ε

 
 

 
 

k +

−
K

1 +ε

 
 

 
 

k−

 

 
  

 

+ λ
K

1 + ε

 
 

 
 
∂

ζ
ε

 

 
 
 

k+

− λ
K

1+ ε

 
 

 
 
∂

ζ
ε

 

 
 
 

k −

= 0

(7.53)

for remaining layers.

Equation (7.53) is the discrete form of the finite strain consolidation equation

∂tε +
ρs

ρw

−1
 

 
  

 
 ∂ζ

K

1 + ε

 
 

 
 + ∂ζ

1

gρw

∂σ e

∂ε

K

1+ ε

 
 

 
 ∂ζ ε

 

 
  

 
 = 0

(7.54)



first derived by Gibson et al. (1967). Since

∂σe

∂ε
≤ 0

(7.55)

(7.54) is formally a parabolic or diffusion equation. Equation (7.54) was used by Cargill
(1985) in the formulation of a model for dredge material consolidation and by Le
Normant (1998) to represent bed consolidation in a three-dimensional cohesive sediment
transport model. The classic linear consolidation equation (Middleton and Wilcock,
1994) omits the second term associated with self weight in (7.54) and introduces a
constant consolidation coefficient

Cc = − 1+ ε( )
∂σ e

∂e

K

gρw

(7.56)

reducing (7.54) to

∂tε = Cc∂ zzε (7.57)

Equation (7.57) has separable solutions of the form

ε = φn ζ( )exp −λn

Cc

B2
t

 
 

 
 

∂ζζφn + λnφn = 0

ζ =
z

B

(7.58)

which provides some justification for empirical relationship (7.32). The solution of the
finite strain consolidation equations, (7.52) and (7.53), requires constitutive relationships

K

1 + ε
= f1 ε( )

∂σe

∂ε
= f2 ε( )

(7.59)

Cargill (1985) presents graphical forms of these relationships based on laboratory analysis
of cohesive sediments from a number of estuaries. The finite strain consolidation
formulation is currently being implement in the EFDC and will be tested and released
upon selection of a generic set of constituitive relationship.

8. References

Ariathurai, R., and R. B. Krone, 1976: Finite element model for cohesive sediment
transport. J. Hyd. Div. ASCE, 102, 323-338.



Ambrose, R. B., T. A. Wool, and J. L. Martin, 1993: The water quality analysis and
simulation program, WASP5: Part A, model documentation version 5.1. U. S. EPA,
Athens Environmental Research Laboratory, 210 pp.

Blumberg, A. F., B. Galperin, and D. J. O'Connor, 1992: Modeling vertical structure of
open-channel flow. J. Hydr. Engr., 118, 1119-1134.

Boyer, J. M., S. C. Chapra, C. E. Ruiz, and M. S. Dortch, 1994: RECOVERY, a
mathematical model to predict the temporal response of surface water to contaminated
sediment. Tech. Rpt. W-94-4, U. S. Army Engineer Waterways Experiment Station,
Vicksburg, MS, 61 pp.

Burban, P. Y., W. Lick, and J. Lick, 1989: The flocculation of fine-grained sediments in
estuarine waters. J. Geophys. Res., 94, 8323-8330.

Burban, P. Y., Y. J. Xu, J. McNeil, and W. Lick, 1990: Settling speeds of flocs in fresh
and seawater. J. Geophys. Res., 95, 18,213-18,220.

Cargill, K. W., 1985: Mathematical model of the consolidation and desiccation processes
in dredge material. U.S. Army Corps of Engineers, Waterways Experiment Station,
Technical Report D-85-4.

Dortch, M., C. Ruiz, T. Gerald, and R. Hall, 1998: Three-dimensional contaminant
transport/fate model. Estuarine and Coastal Modeling, Proceedings of the 5nd
International Conference, M. L. Spaulding and A. F. Blumberg, Eds., American Society
of Civil Engineers, New York, 75-89.

Galperin, B., L. H. Kantha, S. Hassid, and A. Rosati, 1988: A quasi-equilibrium
turbulent energy model for geophysical flows. J. Atmos. Sci., 45, 55-62.

Garcia, M., and G. Parker, 1991: Entrainment of bed sediment into suspension. J. Hyd.
Engrg., 117, 414-435.

Gibbs, R. J., 1985: Estuarine Flocs: their size, settling velocity and density. J. Geophys.
Res., 90, 3249-3251.

Gibson, R. E., G. L. England, and M. J. L. Hussey, 1967: The theory of one-dimensional
consolidation of saturated clays. Geotechnique, 17, 261-273.

Hamrick, J. M., 1992: A three-dimensional environmental fluid dynamics computer
code: Theoretical and computational aspects. The College of William and Mary, Virginia
Institute of Marine Science, Special Report 317, 63 pp.

Hamrick, J. M., and T. S. Wu, 1997: Computational design and optimization of the
EFDC/HEM3D surface water hydrodynamic and eutrophication models. Next



Generation Environmental Models and Computational Methods. G. Delich and M. F.
Wheeler, Eds., Society of Industrial and Applied Mathematics, Philadelphia, 143-156.

Hayter, E. J., and A. J. Mehta, 1983: Modeling fine sediment transport in estuaries.
Report EPA-600/3-83-045, U.S. Environmental Protection Agency. Athens, GA>

Hayter, E.J., M. Bergs, R. Gu, S. McCutcheon, S. J. Smith, and H. J. Whiteley, 1998:
HSCTM-2D, a finite element model for depth-averaged hydrodynamics, sediment and
contaminant transport. Technical Report, U. S. EPA Environmental Research Laboratory,
Athens, GA.

Hwang, K.-N, and A. J. Mehta, 1989: Fine sediment erodibility in Lake Okeechobee.
Coastal and Oeanographic Enginnering Dept., University of Florida, Report UFL/COEL-
89/019, Gainsville, FL.

Letter, J. V., L. C. Roig, B. P. Donnell, Wa. A. Thomas, W. H. McAnally, and S. A.
Adamec, 1998: A user's manual for SED2D-WES, a generalized computer program for
two-dimensional, vertically averaged sediment transport. Version 4.3 Beta Draft
Instructional Report, U. S. Army Corps of Engrs., Wtrwy. Exper. Sta., Vicksburg, MS.

Le Normant, C., E. Peltier, and C. Teisson, 1998: Three dimensional modelling of
cohesive sediment in estuaries. in Physics of Estuaries and Coastal Seas, (J. Dronkers and
M. Scheffers, Eds.), Balkema, Rotterdam, pp 65-71.

Lick, W., and J. Lick, 1988: Aggregation and disaggregation of fine-grained lake
sediments. J Great Lakes Res., 14, 514-523.

Mehta, A. J., E. J. Hayter, W. R. Parker, R. B. Krone, A. M. Teeter, 1989: Cohesive
sediment transport. I: Process description. J. Hyd. Engrg., 115, 1076-1093.

Mehta, A. J., T. M. Parchure, J. G. Dixit, and R. Ariathurai, 1982: Resuspension potential
of deposited cohesive sediment beds, in Estuarine Comparisons, V. S. Kennedy, Ed.,
Academic Press, New York, 348-362.

Mehta, A. J., and F. Jiang, 1990: Some field observations on bottom mud motion due to
waves. Coastal and Oeanographic Enginnering Dept., University of Florida, Gainsville,
FL.

Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for
geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851-875.

Middleton, G. V., and P. R. Wilcock, 1994: Mechanics in the Earth and Environmental
Sciences. Cambridge University Press, Cambridge, UK.

Park, K., A. Y. Kuo, J. Shen, and J. M. Hamrick, 1995: A three-dimensional
hydrodynamic-eutrophication model (HEM3D): description of water quality and sediment



processes submodels. The College of William and Mary, Virginia Institute of Marine
Science. Special Report 327, 113 pp.

Shrestha, P. A., and G. T. Orlob, 1996: Multiphase distribution of cohesive sediments and
heavy metals in estuarine systems. J. Environ. Engrg., 122, 730-740.

Smagorinsky, J., 1963: General circulation experiments with the primative equations, Part
I: the basic experiment. Mon. Wea. Rev., 91, 99-152.

Smith, J. D., and S. R. McLean , 1977: Spatially averaged flow over a wavy bed. J.
Geophys. Res., 82, 1735-1746.

Smolarkiewicz, P. K., and T. L. Clark, 1986: The multidimensional positive definite
advection transport algorithm: further development and applications. J. Comp. Phys., 67,
396-438.

Smolarkiewicz, P. K., and W. W. Grabowski, 1990: The multidimensional positive
definite advection transport algorithm: nonoscillatory option. J. Comp. Phys., 86, 355-
375.

Tsai, C. H., S. Iacobellis, and W. Lick, 1987: Floccualtion fo fine-grained lake sediments
due to a uniform shear stress. J Great Lakes Res., 13, 135-146.

Van Rijin, L. C., 1984: Sediment transport, Part II: Suspended load transport. J. Hyd.
Engrg., 110, 1613-1641.

Villaret, C., and M. Paulic, 1986: Experiments on the erosion of deposited and placed
cohesive sediments in an annular flume and a rocking flume. Coastal and Oeanographic
Enginnering Dept., University of Florida, Report UFL/COEL-86/007, Gainsville, FL.

Ziegler, C. K., and B. Nesbitt, 1994: Fine-grained sediment transport in Pawtuxet River,
Rhode Island. J. Hyd. Engrg., 120, 561-576.

Ziegler, C. K., and B. Nesbitt, 1995: Long-term simulation of fine-grained sediment
transport in large reservoir. J. Hyd. Engrg., 121, 773-781.


