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ABSTRACT 

 

 

This report describes and documents the theoretical and computational aspects of a three-

dimensional computer code for environmental fluid flows.  The code solves the three-

dimensional primitive variable vertically hydrostatic equations of motion for turbulent 

flow in a coordinate system which is curvilinear and orthogonal in the horizontal plane 

and stretched to follow bottom topography and free surface displacement in the vertical 

direction which is aligned with the gravitational vector.  A second moment turbulence 

closure scheme relates turbulent viscosity and diffusivity to the turbulence intensity and a 

turbulence length scale.  Transport equations for the turbulence intensity and length scale 

as well as transport equations for salinity, temperature, suspended sediment and a dye 

tracer are also solved.  An equation of state relates density to pressure, salinity, 

temperature and suspended sediment concentration.   

 

The computational scheme utilizes an external-internal mode splitting to solve the 

horizontal momentum equations and the continuity equation on a staggered grid.  The 

external mode, associated with barotropic long wave motion, is solved using a semi-

implicit three time level scheme with a periodic two time level correction.  A multi-color 

successive over relaxation scheme is used to solve the resulting system of equations for 

the free surface displacement.  The internal mode, associated with vertical shear of the 

horizontal velocity components is solved using a fractional step scheme combining an 

implicit step for the vertical shear terms, with an explicit step for all other terms.  The 

transport equations for the turbulence intensity, turbulence length scale, salinity, 

temperature, suspended sediment and dye tracer are also solved using a fractional step 

scheme with implicit vertical diffusion and explicit advection and horizontal diffusion.  A 

number of alternate advection schemes are implemented in the code.   
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1.  INTRODUCTION 

 

The ability to predict the transport and mixing of materials discharged into the 

hydrosphere and atmosphere is an essential element in environmental management.  The 

field of environmental fluid dynamics has emerged in response to the need to understand 

and predict environmental fluid flows and the associated transport and mixing for 

dissolved and suspended materials in these flows.  A large range of space and time scales 

characterize transport and mixing in the hydrologic and atmospheric environments.  For 

example, local mixing associated with the discharge of a buoyant waste fluid into an 

ambient environmental flow can be described in terms of the three dimensional dynamics 

of buoyant turbulent jets and plumes (Fischer et al, 1979).  Outside of this region of local 

or initial mixing, the further mixing and transport of discharged material is governed by 

the dynamics of the ambient environmental flow.   

 

A large class of incompressible ambient environmental flows are characterized by 

horizontal length scales which are orders of magnitude greater than their vertical length 

scales or length scales in the direction aligned with the gravitational vector.  Such flows 

are essentially hydrostatic in the vertical and of the boundary layer type.  Example flows 

in the hydrosphere range from rivers and lakes through estuaries and coastal seas to ocean 

basins.  Similarly in the atmosphere, mesoscale through global scale circulation can be 

described by equations of motion simplified by the hydrostatic and boundary layer 

approximations.  This class of natural environmental flows is also characterized by 

complex boundaries and topography and a host of nonlinear processes.  The realistic 

simulation of these complex flows necessitates the numerical solution of the equations of 

motions and transport equations describing the transport and mixing of dissolved and 

suspended materials. 

 

The development of numerical or computational techniques appropriate for the 

solution of the incompressible, vertically hydrostatic equations of motion occurred largely 

in the field of numerical weather prediction.  The monograph by Haltiner and Williams 

(1980) and the volume edited by Chang (1977) provide excellent descriptions of the 

techniques developed through the late 1970's.  These techniques provided the basis for the 

development of numerical ocean circulation models such as those of Bryan (1969) and 

Semtner (1974).  The growing concern for environmental problems in lakes, estuaries and 

the coastal ocean lead to further development in numerical techniques and models 

appropriate for these flow environments as typified by the work of Simons (1974), Liu 
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and Leendertse (1975), and Blumberg and Mellor (1987).  Continuing developments in 

estuarine and oceanic numerical modeling are presented in the recent volumes edited by 

Heaps (1987) and Nihoul and Jamart (1987), while the text by Pielke (1984) presents 

parallel developments in the modeling mesoscale atmospheric flows.   

 

The purpose of the work presented herein is to formulate a numerical solution scheme for 

incompressible, vertically hydrostatic environmental flows in the hydrosphere and 

atmosphere, and to implement computationally that scheme in a computer code 

appropriate for the range of computing platforms from personal to super computers.  In 

formulating the numerical solution scheme, the goal is not to reinvent the wheel, but to 

build upon the large foundation of previous work briefly referenced in the preceding 

paragraph, and extend it when appropriate to achieve improvements in accuracy, stability 

and performance.  The first version of the code and certain terminology in this report is 

focused toward hydrospheric flows in estuaries and the coastal ocean, as well as lakes, 

reservoirs and rivers.  However, care has be taken to make the solution scheme and code 

readily applicable to analeastic hydrostatic atmospheric flows by a simple substitution of 

an appropriate equation of state.  The remainder of the paper is organized as follows.  The 

governing equations of motion and transport equations are formulated in Section 2.  The 

overall numerical scheme for the equations of motion based on internal, external mode 

splitting is presented in Section 3.  Section 4 contains the formulation of the numerical 

scheme for the external or long surface gravity wave mode and an analysis of its stability 

and propagation characteristics.  The internal, vertical shear or boundary layer mode 

numerical scheme is presented in Section 5.  The numerical schemes for the transport 

equations are presented in Section 6.  The computational aspects of the various numerical 

schemes are also discussed in Sections 4, 5, and 6.  Section 7 describes the computational 

implementation of the numerical schemes in Environmental Fluid Dynamics Computer 

Code (EFDC), and outlines a strategy for the code's application to environmental fluid 

flow simulation and its complementary use as a research tool.  Lastly, Section 8 

summarizes the important features of the numerical scheme and the environmental fluid 

dynamics computer code.  
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2.  FORMULATION OF THE GOVERNING EQUATIONS 

 

The formulation of the governing equations for ambient environmental flows 

characterized by horizontal length scales which are orders of magnitude greater than their 

vertical length scales begins with the vertically hydrostatic, boundary layer form of the 

turbulent equations of motion for an incompressible, variable density fluid.  To 

accommodate realistic horizontal boundaries, it is convenient to formulate the equations 

such that the horizontal coordinates, x and y, are curvilinear and orthogonal.  To provide 

uniform resolution in the vertical direction, aligned with the gravitational vector and 

bounded by bottom topography and a free surface permitting long wave motion, a time 

variable mapping or stretching transformation is desirable.  The mapping or stretching is 

given by: 

 

  z (z
*
 h) / ( h)                                                                               (1) 

 

where * denotes the original physical vertical coordinates and -h and are the physical 

vertical coordinates of the bottom topography and the free surface respectively, Figure 1.  

Details of the transformation may be found in Vinokur (1974), Blumberg and Mellor 

(1987) or Hamrick (1986).  Transforming the vertically hydrostatic boundary layer form 

of the turbulent equations of motion and utilizing the Boussinesq approximation for 

variable density results in the momentum and continuity equations and the transport 

equations for salinity and temperature in the following form: 

 

  

 t(mHu)  x(myHuu) y (mxHvu) z(mwu)  (mf vx my uy mx )Hv

 my Hx (g  p) my(x h  zx H)z p  z(mH1Avzu)Qu              (2) 

 

  

 t(mHv) x (myHuv) y(mxHvv) z(mwv) (mf vx my  uy mx )Hu

 mx Hy (g  p) mx(yh  zy H)z p z(mH1Avz v) Qv              (3) 

 

  zp gH(o)o

1
 gHb                                                                  (4) 

 

  
 t(m ) x (myHu)  y(mxHv) z(mw)  0

                                                (5) 

 

  
 t(m ) x (myH udz

0

1

 ) y (mxH vdz
0

1

 )  0
                                                  (6) 
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   (p,S,T)                                                                                       (7) 

 

  
 t(mHS)  x(myHuS) y (mxHvS) z(mwS)  z(mH

1
AbzS) QS                   (8) 

 

  
 t(mHT) x (myHuT) y (mxHvT)  z (mwT) z(mH

1
AbzT) QT .                (9) 

 

In these equations, u and v are the horizontal velocity components in the curvilinear, 

orthogonal coordinates x and y, mx and my are the square roots of the diagonal 

components of the metric tensor, m = mxmy is the Jacobian or square root of the metric 

tensor determinant.  The vertical velocity, with physical units, in the stretched, 

dimensionless vertical coordinate z is w, and is related to the physical vertical velocity w* 

by: 

 

  
w w

*
 z( t umx

1
x  vmy

1
y ) (1 z)(umx

1
xh vmy

1
yh) .                     (10) 

 

The total depth, H= h + , is the sum of the depth below and the free surface 

displacement relative to the undisturbed physical vertical coordinate origin, z* = 0.  The 

pressure p is the physical pressure in excess of the reference density hydrostatic pressure, 

gH( - z), divided by the reference density, .  In the momentum equations (2, 3) f is 

the Coriolis parameter, Av is the vertical turbulent or eddy viscosity, and Qu and Qv are 

momentum source-sink terms which will be later modeled as subgrid scale horizontal 

diffusion.  The density,  is in general a function of temperature, T, and salinity or water 

vapor, S, in hydrospheric and atmospheric flows respectively and can be a weak function 

of pressure, consistent with the incompressible continuity equation under the anelastic 

approximation (Mellor, 1991,  Clark and Hall, 1991).  The buoyancy, b, is defined in 

equation (4) as the normalized deviation of density from the reference value.  The 

continuity equation (5) has been integrated with respect to z over the interval (0,1) to 

produce the depth integrated continuity equation (6) using the vertical boundary 

conditions, w = 0, at z = (0,1), which follows from the kinematic conditions and equation 

(10).  In the transport equations for salinity and temperature (8,9) the source and sink 

terms, QS and QT include subgrid scale horizontal diffusion and thermal sources and 

sinks, while Ab is the vertical turbulent diffusivity.  It is noted that constraining the free 

surface displacement to be time independent and spatially constant yields the equivalent 

of the rigid lid ocean circulation equations employed by Smetner (1974) and equations 
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similar to the terrain following equations used by Clark (1977) to model mesoscale 

atmospheric flow. 

 

The system of eight equations (2-9) provides a closed system for the variables u, v, w, 

p, , , S, and T, provided that the vertical turbulent viscosity and diffusivity and the 

source and sink terms are specified.  To provide the vertical turbulent viscosity and 

diffusivity, the second moment turbulence closure model developed by Mellor and 

Yamada (1982) and modified by Galperin et al (1988) will be used.  The model relates 

the vertical turbulent viscosity and diffusivity to the turbulent intensity, qq, a turbulent 

length scale, l, and a Richardson number Rq by: 

 

  
Av  vql  0.4(1 36Rq)

1
(1 6Rq)

1
(18Rq)ql

                                          (11) 

 

  
Ab  bql  0.5(1 36Rq)

1
ql

                                                                 (12) 

 

  
Rq 

gHzb

q
2

l 2

H
2

.                                                                                 (13) 

 

where the so-called stability functions v and b account for reduced and enhanced 

vertical mixing or transport in stable and unstable vertically density stratified 

environments, respectively.  The turbulence intensity and the turbulence length scale are 

determined by a pair of transport equations: 

 

  

 t(mHq
2
) x(myHuq

2
)  y(mx Hvq

2
)  z(mwq

2
)  z (mH

1
Aqzq

2
)Qq

2mH
1

Av (zu)
2
 (zv)

2  2mgAbzb  2mH(B1l )
1

q
3

          (13) 

 

  

 t(mHq
2
l )  x(myHuq

2
l ) y (mxHvq

2
l ) z(mwq

2
l ) z(mH

1
Aqz q

2
l )Ql

mH
1

E1l Av (z u)
2
 (z v)

2 mgE1E3l Abzb mHB1
1

q
3
1 E2 ( L)

2
l
2         (14) 

 

  
L
1
 H

1
z
1
 (1 z)

1 
,                                                                       (15) 

 

where B1, E1, E2, and E3 are empirical constants and Qq and Ql are additional source-sink 

term such as subgrid scale horizontal diffusion.  The vertical diffusivity, Aq, is in general 

taken equal to the vertical turbulent viscosity, Av. 
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3.  NUMERICAL SOLUTION TECHNIQUES FOR THE EQUATIONS OF 

MOTION 

 

The equations of motion (2-6) will be solved in a region subdivided into six faced cells.  

The projection of the vertical cell boundaries to a horizontal plane forms a curvilinear, 

orthogonal grid in the orthogonal coordinate system (x,y).  In a vertical (x,z) or (y,z) 

plane, the cells bounded by the same constant z surfaces will be referred to as cell layers 

or layers.  The equations will be solved using a combination of finite volume and finite 

difference techniques, with the variable locations shown in Figure 2.  The staggered grid 

location of variables is often referred to as the C grid (Arakawa and Lamb, 1977) or the 

MAC grid (Peyret and Taylor, 1983).  To proceed, it is convenient to modify equations 

(2,3) by eliminating the vertical pressure gradients using equation (4).  After some 

manipulation, the horizontal momentum equations become: 

 

  

 t(mHu)  x(myHuu) y (mxHvu) z(mwu)  (mf vx my uy mx )Hv

 my Hx p myHgx myHgbxh myHgbzxH  z(mH1Avzu)Qu            (16) 

 

  

 t(mHv) x (myHuv) y(mxHvv) z(mwv) (mf vx my  uy mx )Hu

 mx Hy p mxHgy mxHgbyh mx HgbzyH  z(mH1Avzv)Qv            (17) 

 

The vertical discretization of Equations (16, 17) is considered first.  The equations are 

integrated with respect to z over a cell layer assuming that variables defined vertically at 

the cell or layer centers are constant and that variables defined vertically at the cell layer 

interfaces or boundaries vary linearly over the cell, to give: 

 

  

 t(mHkuk)  x(myHkukuk ) y(mxHkvkuk)  (mwu)k  (mwu)k1

(mf vkx my  uky mx)kHvk   0.5myHkx(pk  pk1) myHk gx

myHk gbkxh 0.5myHkgbk(zk  zk1 )xH m(xz )k m(xz)k1  (Qu)k          (18) 

 

  

 t(mHkvk )k  x(my Hkukvk ) y (mx Hkvkvk)  (mwv)k  (mwv)k1

(mf vkx my  uky mx)kHuk   0.5mx Hky (pk  pk1 )mx Hkgy

mxHkgbkyh 0.5mx Hkgbk (zk  zk1 )yH m(yz )k m(yz)k1  (Qv)k          (19) 

 

where kis the vertical cell or layer thickness and the turbulent shear stresses at the cell 

layer interfaces are defined by: 
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  (xz )k  2H
1
(Av)k(k1  k )

1
(uk1 uk )                                                    (20) 

 

  
(yz )k  2H

1
(Av)k(k1  k )

1
(vk1  vk ).                                                  (21) 

 

If there are K cells in the z direction, the hydrostatic equation can be integrated from a 

cell layer interface to the surface to give: 

 

  

pk  gH  j bj  kbk
j  k

K










 ps

,                                                                 (22) 

 

where ps is the physical pressure at the free surface or under the rigid lid divided by the 

reference density.  The continuity equation (5) is also integrated with respect to z over a 

cell or layer to give: 

 

  
 t(mk) x(myHkuk ) y (mxHkvk ) m(wk wk1 )  0                              (23) 

 

The numerical solution of the vertically discrete momentum equations (18,19) now 

proceeds by splitting the external depth integrated mode associated with external long 

surface gravity waves from the internal mode associated with vertical current structure.  

 

The external mode equations are obtained by summing equations (18,19) over K cells 

or layers in the vertical utilizing equation (22),  

 

 

 

 

 

and are given by:  
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 t(mHu )  x (myHkukuk ) y (mxHkvkuk )  H(mf  vkx my  ukymx )kvk 
k1

K



 my Hgx my Hx ps  myHgb xh myHg kk  0.5k (zk  zk 1)bk 
k1

K










x H

0.5myH
2
x kk

k1

K










 m(xz)K  m(xz)0 Q u

  (24) 

 

  

 t(mHv )  x (myHkukvk ) y(mxHkvkvk )  H(mf vkx my  uky mx )kuk 
k1

K



 mx Hgy mx Hy ps  mxHgb yh mxHg kk  0.5k (zk  zk1)bk 
k1

K










y H

0.5mxH
2
y kk

k1

K










 m(yz)K  m(yz)0 Q v

  (25) 

 

  
 t(m ) x (myHu ) y (mxHv )  0

                                                         (26) 

 

  

k   jbj
j k

K

  0.5kbk

                                                                          (27) 

 

where the over bar indicates an average over the depth.  The depth integrated continuity 

equation (26) follows from equation (6) and provides the continuity constraint for the 

external mode.  Consistent with the form of equation (26), the external mode variables 

will be chosen to be the free surface displacement, , and the volumetric transports myHu 

and mxHv.  Details of the solution of the external mode equations (24-26) are presented 

in Section 4. 

 

A number of formulations are possible for the internal mode equations.  Equations 

(18,19) have K degrees of freedom for each of the horizontal velocity components.  

However, the summation of these equations over K cells or layers in the vertical to form 

the external mode equations (24,25) effectively removes a degree of 

 

freedom since the constraints: 

 

  
k

k1

K

 uk  u 
                                                                                       (28) 
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k

k1

K

 vk  v 
                                                                                       (29) 

 

must be satisfied.  One approach to the internal mode is to solve equations (18,19) using 

the free surface slopes, or the surface pressure gradients in the rigid lid case, from the 

external solution and distribute the error such that equations (28,29) are satisfied.  A 

second approach is to form equations for the deviations of the velocity components from 

their vertical means by subtracting the external equations (24,25) from the layer 

integrated equations (18,19).  However, it will still be necessary to satisfy the constraints 

(28,29).  The approach proposed herein is to reduce the systems of K layer averaged 

equations (18,19) to systems of K-1 equations and use equations (28,29) to provide the 

Kth equation consistent with the actual degrees of freedom. 

 

The internal mode equations are formed by dividing equations (18,19) by the cell 

layer thickness, k, subtracting the equations for cell layer k from the equations for cell 

layer k+1, and then dividing the results by the average thickness of the two cell layers to 

give: 

 

  
 t mHk1, k

1
(uk1  uk )  x myHk1, k

1
(uk1uk 1  ukuk)  y mxHk1,k

1
(vk1uk1  vkuk ) 

  

mk 1,k

1
k1

1
(wu)k1  (wu)k  k

1
(wu)k  (wu)k 1  

k1, k

1
(mf vk1x my  uk1y mx )Hvk1  (mf  vkx my  uky mx )Hvk 

 myHk1, k
1 g(bk1  bk )(xh  zkxH ) 0.5myH

2
k1, k
1 g(k1xbk1  kxbk )

mk 1,k
1

k1
1 (xz)k1  (xz)k  k

1 (xz)k  (xz)k 1   k1,k
1 (Qu)k1  (Qu)k 

     (30) 

 

  
 t mHk1, k

1
(vk1  vk )  x myHk1, k

1
(uk 1vk1 ukvk )  y mxHk1, k

1
(vk1vk1  vkvk ) 

  

mk 1,k
1

k1
1 (wv)k1  (wv)k   k

1 (wv)k  (wv)k1  

k1, k
1 (mf vk1x my  uk1y mx )Huk1  (mf vkx my  uky mx )Huk 

 mxHk1,k

1
g(bk1  bk )(yh  zkyH)  0.5mx H

2
k1, k

1
g(k1ybk1  kybk )

mk 1,k
1

k1
1 (yz)k1  (yz)k  k

1 (yz)k  (yz)k 1   k1,k
1 (Qv )k1  (Qv)k 

     (31) 

 

  
k 1,k  0.5(k 1  k)  .                                                                         (32) 

 



 

15 

Inspection of equations (30,31) reveals that they could have also been obtained by 

differentiating the horizontal momentum equations (16,17) with respect to z and 

introducing a finite difference discretion in z.  Using equations (20,21) to relate the shear 

stresses to the velocity differences across the interior interfaces suggest that equations 

(30,31) be interpreted as a system of K-1 equations for either the K-1 interfacial velocity 

differences or the K-1 interior interfacial shear stresses.  Details of the solution of the 

internal mode equations (30,31) will be presented in Section 5. 

 

The solution of the vertical velocity, w, employs the continuity equations.  Dividing 

equation (23) by k, and subtracting equation (26) gives:   

 

  
wk  wk1  m

1
k x myH(uk  u )  y mx H(vk  v )  

.                                 (33) 

 

Since wo = 0, the solution proceeds from the first cell layer to the surface.  Provided the 

constraints (28,29) are satisfied, the surface velocity at k = K will be zero and satisfy the 

boundary condition. 
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4.  COMPUTATIONAL ASPECTS OF THE EXTERNAL MODE SOLUTION 

 

The formulation of a computational algorithm for the numerical solution of the 

external mode equations (24-26) begins by introducing modified variables and 

reorganizing the equations to give: 

 

  

 tU  mx

1
myHgx mx

1
myHx ps mx

1
myHg b xh B xH  0.5Hx 

mx
1

k x(Ukuk ) y (Vkuk ) 
k1

K

 mx
1

k (mf vkx my  ukymx )Hvk

k1

K



my(xz )K my (xz)0 mx
1Q u            (34) 

 

  

 tV  mxmy

1
Hg y mxmy

1
H y ps mxmy

1
Hg b yh  B  y H  0.5H y 

my
1

k  x(Ukvk )   y(Vkvk ) 
k1

K

  my
1

k(mf vk x my  uk y mx)Huk

k1

K



mx( yz)K  mx ( yz)0  my
1Q v            (35) 

 

  
 t m

1
xU  yV    0

                                                                      (36) 

 

  
U myHu 

                                                                                        (37) 

 

  V  mxHv                                                                                          (38) 

 

  
Uk  myHuk                                                                                       (39) 

 

  Vk  mxHvk                                                                                        (40) 

 

  
  kk

k1

K












                                                                                   (41) 

 

  
B  k k  0.5k (zk  zk1 )bk 

k 1

K












                                                         (42) 

 

Equations (34,35) now equate the time rate of change of the external or depth integrated 

volumetric transports to the pressure gradients associated with the free surface slope, 
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atmospheric pressure and buoyancy, the advective accelerations, the Coriolis and 

curvature accelerations, the free surface and bottom tangential stresses and the general 

source, sink terms.  The staggered location of variables on the computational grid, Figure 

2, allows most horizontal spatial derivatives in equations (34-36) to be represented by 

second order accurate central differences and results in conservation of volume, mass, 

momentum and energy in the limit of exact integration of the equations in time (Simons, 

1973, Haltiner and Williams, 1980).  When a variable is not located at a point required 

for implementation of central difference operators, averaging in either or both spatial 

directions is appropriate.  The use of the spatial  averaging scheme of Arakawa and Lamb 

(1977) to represent the Coriolis and curvature accelerations also guarantees energy 

conservation.   

 

Following the introduction of discrete finite difference and averaging representations 

in space, equations (34-36), for a horizontal grid of L cells, may be viewed as a system of 

3L ordinary differential equations in time for the volumetric transport and the free surface 

displacement.  The numerous techniques available to solve these equations generally fall 

within the two categories of explicit and semi-implicit.  The most frequently used explicit 

scheme is the three time level leapfrog scheme where the time derivatives are 

approximated between time levels n+1 and n-1, and the remaining terms are evaluated at 

time level n.  Although computationally simple to implement, the maximum time step is 

restricted by the Courant-Fredrick-Levy condition based on the gravity wave phase speed.  

An alternate approach allowing larger time steps is the semi-implicit three time level 

scheme (Madala and  

 

 

 

 

Piacsek, 1977), which when implemented for equations (34-36) is 

 

  

U 
n1

U 
n1

 (mx

1
my H)

u
g x

u


n1
 

n1  2 (mx

1
myH )

u
 x

u
ps

2(mx
1myH)u g b u x

uh B ux
uH  0.5H u x

u  2 (mx
1 )u

k  x
u(Ukuk )   y

u(Vkuk ) 
k1

K



2(mx

1
)

u
k (mf  vk x my  uk y mx )Hvk 

u

k1

K

  2my

u
( xz

n1
)K  (xz

n1
)0 

u

2(mx

1
)

u
k  x myH xx

n1   y mxH xy

n1  ymxH xy

n1
  xmyH yy

n1 
k

u

k1

K


(43) 
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V 
n1

 V 
n1

 (mxmy

1
H)

v
g y

v


n1
 

n1  2(mxmy

1
H )

v
 y

v
ps

2(mxmy
1H )v g b v y

vh B v y
vH  0.5H v y

v  2(my
1)v

k  x
v (Ukvk )  y

v (Vkvk ) 
k1

K



2(my

1
)

v
k (mf  vk x my  uk y mx )Huk 

v

k1

K

  2mx

v
( yz

n1
)K  ( yz

n1
)0 

v

2(my

1
)

v
k  x myH yx

n1   y mx Hyy

n1   ymxH xx

n1
  xmyH yx

n1 
k

v

k1

K


(44) 

 

  


n1
 

n1
 (m

1
)

x


(U 

n1
U 

n1
)y


(V 

n1
V 

n1
)  0

                            (45) 

 

with being the time step.  All terms in equations (43-45) are understood to be evaluated 

at the center time level n except those evaluated at the forward and backward time levels, 

n+1 and n-1, which are denoted by superscripts.  The u, v, and  superscripts indicate that 

a variable is evaluated, or that a spatial derivative is centered, at the corresponding spatial 

point.   

 

The subscript of the spatial central difference operator, , indicates direction.  The 

grid cells are presumed to be bounded in the horizontal by lines of constant integer values 

of the dimensionless orthogonal coordinates x and y, resulting in the central spatial 

differences having the forms:  

 

  x (x, y)   (x0.5,y)(x0.5, y)                                                    (46) 

 

  
y (x,y)  (x,y0.5)(x,y0.5)

                                                    (47) 

 

Application of these finite difference operators to the advective accelerations is illustrated 

by: 

 

  
 x

u
Uk(x)uk (x)  Uk(x  0.5)uk (x  0.5) Uk (x  0.5)uk(x  0.5)

                       (48) 

 

where the constant y dependence of the variables is implied.  Since the u type variables 

are located at integer values of x, averaging is necessary to obtain values at the half 

intervals.  Averaging both the transport and the velocity gives: 
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 x

u
Uk(x)uk (x)   0.25 Uk (x 1) Uk (x)  uk(x 1)  uk (x) 

0.25 Uk(x) Uk (x 1)  uk (x)  uk (x 1) 
                              (49) 

 

which is consistent with a central difference approximation of the nonconservative form 

of this portion of the advective acceleration.  Averaging the transport and allowing the 

velocity to be advected from the upwind direction gives: 

 

  

 x

u
Uk(x)uk (x)   0.5Max Uk(x 1) Uk(x) ,0 uk

n1
(x, y)

0.5Min Uk (x 1) Uk (x) ,0 uk
n1(x 1, y)

0.5Max Uk (x) Uk(x 1) ,0 uk

n1
(x 1, y)

0.5Min Uk (x) Uk (x 1) ,0 uk
n1(x, y)

                               (50) 

 

which is consistent with an upwind or backward difference approximation of the 

nonconservative form of this portion of the advective acceleration.  In equation (50), the 

transport is still at time level n, while the velocity is at time level n-1, for both stability 

and accuracy (Smolarkiewicz and Clark, 1986).  The preference for the use of equation 

(49) or equation (50) will generally depend upon the physical situation being simulated.  

The central difference form introduces no numerical diffusion but may produce solution 

fields which exhibit cell to cell spatial oscillations.  These oscillations can be eliminated 

by the addition of horizontal diffusion terms to the momentum equations.  Specification 

of the horizontal diffusivity allows the degree of spatial smoothing to be controlled.  The 

upwind difference form introduces numerical diffusion and does not produce spatial 

oscillations in the solution field.  The Coriolis and curvature terms in equations (43,44) 

are discretized using an energy conserving spatial averaging and differencing ( Arakawa 

and Lamb ,1977, Haltiner and Williams, 1980).  For example, the Coriolis and curvature 

term in equation (43) is given by: 

 

  
(mf  vkxmy ukymx )Hvk 

u

 0.5 RHvk 

(x  0.5, y) RHvk 


(x 0.5,y) 

      (51) 

 

  

Rk
 (x  0.5)  f m(x  0.5, y)  vk

 (x  0.5, y) my(x  1,y)  my (x, y) 

uk
 (x  0.5,y) mx (x  0.5, y  0.5) mx (x  0.5, y  0.5) 

                     (52) 

 

  
vk


(x  0.5, y)  0.5 vk(x  0.5, y  0.5)  vk (x  0.5, y  0.5) 

                             (53) 
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uk


(x  0.5, y)  0.5 uk (x 1, y)  uk (x, y) 

                                                   (54) 

 

where the variables locations are shown in Figure 3. 

 

Since the bottom tangential stresses in equations (43,44) must be supplied from the 

internal mode solution which follows the external solution, it is lagged at the backward 

time level.  The general source, sink term has been replaced by horizontal diffusion terms 

having the form proposed by Mellor and Blumberg (1985).  The horizontal stress tensor is 

taken of the form: 

 

  
 xx 

k
 2AHmx

1
 xuk                                                                             (55) 

 

  
xy 

k
 yx 

k
 2AH mx

1
xvk my

1
yuk 

                                                   (56) 

 

  
yy 

k
2AHmy

1
yvk                                                                             (57) 

The horizontal diffusion coefficient, AH, is often specified as a minimum constant value 

necessary to smooth cell to cell spatial oscillations in the solution field when the central 

difference form of the advective acceleration, equation (49) is used.  When the horizontal 

turbulent diffusion is used to represent subgrid scale mixing, AH may be determined as 

suggested by Smagorinsky (1963). 

 

The solution scheme for equations (43-45) involves first evaluating all terms in the 

three equations at time levels n and n-1.  On boundaries where the transports are 

specified, the specified values at time level n+1 are inserted into equation (45).  Equations 

(43,44) are then used to eliminate the unknown transports at time level n+1, from 

equation (45).  The result is a discrete Helmholtz type elliptic equation for the free 

surface displacement at time level n+1, having the general form: 

 

  


n1
 g

2
(m

1
)

 x


(mx

1
my H)

u
 x

u


n1   y


(mxmy

1
H )

v
 y

v


n1     0
              (58) 

 

with the term containing all of the previously evaluated terms and transport boundary 

conditions.  For cells where the free surface displacement is specified, equation (58) is 

replaced by an equation which enforces the specified boundary condition at time level 
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n+1.  For the rigid lid case where the free surface displacement is constant in time and 

space, equation (58) is modified to give an equation for the unknown surface pressure, ps, 

by eliminating the first term, replacing g in the discrete elliptic operator by ps, and 

appropriately modifying the last term.  In the computer code, the system of equations 

corresponding to equation (58) is solved by a reduced system conjugate gradient scheme 

with a multicolor or red-black ordering of the cells (Hageman and Young, 1981).  The 

conjugate gradient iterations continue until the sum of the squared residuals is less than a 

specified value.  The free surface displacements or surface pressures are then substituted 

into equations (43,44) to determine the transports at time level n+1.  Since the solution of 

equation (58) is approximate, equation (45) may not be identically satisfied upon 

substitution of the time level n+1 transports and free surface displacement.  To insure that 

equation (45) is identically satisfied in the case of a dynamic free surface, it is solved for 

a revised value of the time level n+1, free surface displacement after introduction of the 

time level n+1 transports.  For the rigid lid case, an external divergence error is calculated 

and compensated for by adding appropriate volumetric source or sink terms to quation 

(45) during the next time step. 

 

Some insight into the stability and accuracy of the semi-implicit three time level 

scheme for solving the external mode equations with a dynamically active free surface 

can be gained by a Fourier analysis of the linearized discrete equations:   

 

  
U 

n1
U 

n1
 (mx

1
myho)

u
gx

u


n1
 

n1  2(mx

1
my )

u
fV 

u

                           (59) 

 

  
V 

n1
 V 

n1
 (mxmy

1
ho)

v
gy

v


n1
 

n1  2 (mxmy

1
)

v
fU 

v

                           (60) 

 

  


n1
 

n1
 (m

1
)

x


(U 

n1
U 

n1
)y


(V 

n1
V 

n1
)  0

                            (61) 

 

Introduction of the Fourier representations: 

 

  

U 

V 

W 


















Uo

Vo

Wo

















exp in  ikxmxx  ikymyy 

                                                  (62) 

 

  
W  ghom 

                                                                                    (63) 
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on a rectangular Cartesian grid gives the eigenvalue problem: 

 

  
2
M M M  0                                                                          (64) 

 

  

M 

1 0 2imx

1
myCsin 0.5kxmx 

0 1 2imxmy

1
Csin 0.5kymy 

2iCsin 0.5kxmx  2iCsin 0.5kymy  1
















                  (65) 

 

  

M  2 f cos 0.5kxmx cos 0.5kymy 
0 mx

1
my 0

mxmy

1
0 0

0 0 0

















                               (66) 

 

  

M 

1 0 2imx

1
myCsin 0.5kxmx 

0 1 2imxmy

1
Csin 0.5kymy 

2iCsin 0.5kxmx  2iCsin 0.5kymy  1
















                  (67) 

 

  
C 

gho

m


                                                                                       (68) 

 

where  is the frequency, kx and ky are the wave numbers and C is the Courant number 

associated with the shallow water wave speed. 

 

The eigenvalue, , is related to the frequency and time step by: 

 

     exp(i)                                                                                  (69) 

 

The characteristic polynomial of equation (64) is:  

 

  


2
 1  4

 2
2
1  0

                                                                     (70) 
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 .  (71) 
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and the roots or eigenvalues are: 

 

  
  1,   i 1

2
,   i 1

2
,1,   i 1

2
,   i 1

2

         (72) 

 

For linear stability, the absolute values of the eigenvalues must be less than or equal to 

one.  The absolute values of the four complex eigenvalues are identically one, provided 

the absolute value of  is less than one, which requires: 

 

    f
1

                                                                                           (73) 

 

Thus the linearized three time level semi-implicit scheme is neutrally stable when 

equation (73) is satisfied.  Since at mid-latitude the inverse of the Coriolis parameter is on 

the order of 10,000 sec, the time step is not overly constrained.  The overall stability of 

the scheme will most likely be controlled by the stability of the explicit advective and 

curvature accelerations.  The form of the curvature terms in the momentum equations 

suggest that they may increase the effective magnitude of the Coriolis parameter and 

reduce the stable time step.  The stability of the explicit scheme for the advective 

accelerations will be discussed in subsequent sections. 

The major computational problem with three time level schemes for systems of first order 

equations is the doubling of the number of eigenvalues over those physically 

characterizing the system.  The eigenvalues in equation (72) are grouped such that the 

first three correspond to the true physical solution or physical mode of the system while 

the last three are spurious and give rise to what is referred to as the computational mode 

(Haltiner and Williams, 1980).  Expressing the physical mode eigenvalues of the 

numerical scheme in terms of  using equation (69), gives the dispersion relation: 

 

  
  0, 0.5arccos  

                                                                        (74) 

 

 

 

which can be compared with the dispersion relation  
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2

                                      (75) 

 

for the continuous in time and space form of equations (59-61).  Both the numerical and 

continuous solution are characterized by a steady mode and pairs of waves propagating in 

opposite directions.  The  major feature of the computational mode of the numerical 

solution scheme, represented by the last three eigenvalues in equation (72), is an 

alternating change in sign of the solution at every time step.  Since all eigenvalues of the 

scheme are neutrally stable, the computational mode solution can persist and become a 

source of error.  Two alternatives to eliminating the computational mode are the 

application of weak time filter or the periodic insertion of a single step using a two time 

level scheme (Haltiner and Williams, 1980).  For the present work, the insertion of a two 

time level step or possibly more appropriately termed a correction step was selected. 

 

The correction step used to eliminate the computational mode is a trapezoidal scheme.  

The scheme computes a corrected time level n+1 solution using the initial condition at 

time level n and the solution at time level n+1 previously computed using the three time 

level scheme.  The momentum and continuity equations, equivalent to equations (43-45), 

for the trapezoidal correction step are: 
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                              (78) 

 

where the notation n+1/2 implies: 

 

  
 

n
1

2  0.5  
*
 

n 
 

 

with * denoting evaluation using time level n+1 results from the previous three time level 

step.  Because of stability restrictions, the advective accelerations must be of the upwind 

form: 
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                              (79) 

 

The solution of semi-implicit equations (76-78) follows that outlined for the three time 

level scheme. 

 

To analyze the stability of the trapezoidal correction step with a dynamically active 

free surface, two points of view will be considered.  Since a single application of the 

trapezoidal scheme essentially corrects a step of the three time level scheme, it is actually 

three time level.  The Fourier analysis of the combined linearized three time level, 

trapezoidal correction scheme on a rectangular Cartesian grid gives the eigenvalue 

problem: 



 

26 

 

  
2
N  (NN  NM

1
M)NM

1
M  0                                               (80) 

 

  

N 

1 0 imx

1
myCsin 0.5kxmx 

0 1 imxmy

1
Csin 0.5kymy 

iCsin 0.5kxmx  iCsin 0.5kymy  1

















                       (81) 

 

  

N  0.5 f cos 0.5kxmx cos 0.5kymy 
0 mx

1
my 0

mxmy

1
0 0

0 0 0
















                              (82) 

 

  

N 

1 0 imx

1
myCsin 0.5kxmx 

0 1 imxmy

1
Csin 0.5kymy 

iCsin 0.5kxmx  iCsin 0.5kymy  1

















                       (83) 

 

The sixth order characteristic polynomial of equation (80) is algebraically rather complex 

and only the two roots or eigenvalues, 1 and 0, can be determined in closed form.  The 

eigenvalue of one is associated with the steady physical mode, while the eigenvalue of 

zero is spurious but serves a useful purpose in eliminating the computational mode.  A 

second point of view is that the successive application of the trapezoidal correction is 

equivalent to an iterative two time level scheme.  The Fourier analysis of such a scheme 

gives the eigenvalue problem: 

 

   (N  N)  (N  N )  0                                                                      (84) 

 

whose characteristic polynomial is: 

 

  
 1  

2
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                                                                      (85) 

 

 

where 

 



 

27 

  

 

1C
2 my

mx

sin
2 kxmx

2











mx

my

sin
2 kymy

2





















1

4
f

2


2
cos

2 kxmx

2









cos

2 kymy

2











1C2 my

mx

sin2 kxmx

2











mx

my

sin2 kymy

2





















1

4
f 2 2 cos2 kxmx

2









cos2 kymy

2











     (86) 

 

The roots or eigenvalues of equation (80) are: 

 

    1,  i 1 
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 .                                                             (87) 

 

Since the absolute value of chi is always less than one, the absolute value of the complex 

eigenvalues is identically one and the scheme is neutrally and unconditionally stable.   

 

The results of the Fourier analysis is also useful in accessing the accuracy of the 

external mode solution scheme with respect to its ability to represent the dispersion 

relation and the phase and group velocities of shallow water waves (Foreman, 1983).  The 

dispersion relations for the continuous in space and time shallow water equations, and the 

three and two time level schemes, respectively, are: 
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                                          (88) 

 

    0.5arccos( )                                                                              (89) 

 

    arccos( )                                                                                   (90) 

 

where  and  are given by equations (71,86).  The phase and group velocities are given 

respectively by: 
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A comparison of the dispersion relations for a square Cartesian grid with a Courant 

number of 5 and f  of 0.01 is shown in Figure 4.  The dispersion relations for the three 

time level and the two time level, included for comparison, difference schemes show 

excellent agreement with the continuous equations for dimensionless wave numbers less 

than approximately 0.05.  As the dimensionless wave number magnitude increases toward 

0.1, both numerical schemes under predict the dimensionless frequency with the three 

time level scheme being less accurate than the two time level scheme.  The magnitudes of 

the phase velocity as a function of the dimensionless horizontal wave numbers are shown 

in Figure 5.  Both numerical schemes increasingly under predict the phase velocity 

magnitude as the wave number magnitude increases, but provide relatively accurate 

predictions for dimensionless magnitudes less than 0.05, with the two time level scheme 

being more accurate.  The magnitudes of the group velocity as a function of the 

dimensionless horizontal wave numbers are shown in Figure 6.  Again the numerical 

schemes increasingly under predict the group velocity magnitude as the wave number 

magnitude increases, but provide relatively accurate predictions for dimensionless 

magnitudes less than 0.05.  Although the two time level scheme is shown to be more 

accurate than the three time level scheme at higher wave number magnitudes, it would be 

computationally much more costly to implement due to the iterative evaluation of the 

Coriolis, curvature and advective accelerations.   

 

 

 

 

 

5.  COMPUTATIONAL ASPECTS OF THE INTERNAL MODE SOLUTION 

 

The internal mode equations (30,31) are solved using a fractional step scheme (Peyret 

and Taylor, 1983), with the first step being explicit and the second step being implicit.  

Figure 7 illustrates the location variables in the x,z plane for the x componoent of the 

internal mode equations.  The computational equations for the three time level explicit 

step are: 
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W mwmxmyw                                                                               (96) 

 

where ** denotes the provisional solution, and all terms not having a specified time level 

are understood to be at the centered time level n.  The horizontal volume transports, U 

and V are as defined by equations (39,40) and W is the vertical volume transport.  The 

horizontal difference operations on the horizontal advection terms are identical to those 

presented in Section 3, equations (48-50).  The vertical momentum flux terms may be 

represented in forms  

 

consistent with central or upwind differencing,  
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where the advected velocity in the upwind form, equation (98) is evaluated at time level 

n-1 for stability.  The horizontal difference operations on the buoyancy and mean and 

total depths are central difference operators defined by equations (46) and (47).  The 
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inclusion of horizontal diffusion in the source, sink terms in equations (94,95) would 

follow from its inclusion in equations (43,44).  The Coriolis and curvature terms are 

averaged and differenced by the energy conserving scheme presented in Section 3, 

equations (51-53).  The stability of the explicit fractional step, equations (94,95), is 

governed by the stability of the discretization of the horizontal and vertical advective 

accelerations, which will be discussed in Section 5, and the discretization of the Coriolis 

and curvature terms.  The results of the Fourier stability analysis of the external mode 

scheme, with respect to the Coriolis acceleration, can be shown to apply to the internal 

mode scheme as well.  

 

The computational equations for the second step of the three time level scheme are: 
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Using equations (20,21), the turbulent shear stresses are related to  

 

the horizontal transports by: 
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                                                          (102) 

 

Equations (101,102) could be used to eliminate the turbulent shear stresses from 

equations (99,100) to give a pair of K-1 systems of equations for the transport differences 

between layers, however, the resulting equations are poorly conditioned.  Instead, 

equations (101,102) are used to eliminate the horizontal transport differences at time level 

n+1 from equations (99,100) to give a pair of K-1 equations for the turbulent shear 

stresses  
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                                                                (103) 
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                                                                 (104) 

 

These equations are diagonally dominant and well conditioned, and can be solved 

independently at each of the horizontal velocity locations.  Since equations (103,104) 

represent fully implicit, backward difference in time, schemes for one dimensional 

parabolic diffusion equations, the solutions are unconditionally stable (Fletcher, 1988).  

Given the solutions of equations (103,104) the shear stresses, the K-1 transport 

differences, Uk+1-Uk and Vk+1-Vk, are determined from equations (101,102) and 

combined with the continuity constraints, equations (28,29), to form a pair of K equations 

for the horizontal transports in each cell layer.  To illustrate, the horizontal transports in 

the surface cell layer are determined analytically and given by: 
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                                                            (105) 

 

and a similar expression for VK.  Working down from the surface using the K-1 transport 

differences allows the remaining transports to be determined.  It is noted for later use that 

the bottom cell layer transports can be expressed in terms of the depth integrated 

transports and the transport differences using: 

 

  

U1 U  1   j
j 1

k












k1

K1

 Uk1 Uk 
                                                         (106) 

 

and an identical equation for V1. 

 

Solution of equations (103,104) requires specification of bottom and surface stresses 

at k=0 and k=K, respectively.  On the free surface, k=K, the surface wind stress 
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components are specified.  On the bottom fluid-solid boundary, k=0, the bottom stress 

must be specified.  The simplest approach to specifying the bottom stress components 

utilizes the velocity component in the bottom cell layer and the quadratic friction 

relations: 
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                                                    (108) 

 

Assuming a logarithmic velocity profile between the solid bottom and the middle of the 

bottom cell layer gives the bottom stress coefficient: 
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                                                                          (109) 

 

where zo* is the dimensional bottom roughness height.  Inserting equation (106) and a 

corresponding equation for V1 into equations (107,108), respectively allows the bottom 

stresses at time level n+1 to be expressed in terms of the depth integrated transport 

components, known from the external mode solution, and the unknown transport 

differences at time level n+1.  However, the transport differences at time level n+1 are 

related to the shear stress components by equations (101,102), allowing the bottom 

stresses to be expressed in terms of the depth integrated transports and the  

internal shear stresses by: 
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and a similar expression for the y component.  Inserting equation (110) and the 

corresponding y component equation for the bottom stress components into the k=1 pair 

of equations (103,104) results in a nearly tridiagonal system with a fully populated first 
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row.  The systems of equations are still efficiently solved using a tridiagonal equation 

solver and the Sherman-Morrison formula (Press et al, 1986).   

 

The internal mode solution is completed by the determination of the vertical velocity 

using: 

 

  
wk  wk1  (m


)
1
k x


Uk U   y


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                                         (111) 

which follows from equation (33).  The solution of equation (111), where all variables are 

at time level n+1, proceeds from k=1 since wo=0.  A two time level correction step is also 

periodically inserted into the internal mode time integration on the same time step as the 

external mode correction.  Since the computational equations follow directly from the 

three time level equations using the details of the external mode presentation in Section 4, 

they will not be presented here. 

 

 

6.  Numerical Solution Techniques for the Transport Equations 

 

In this section, solutions techniques for the transport equations for salinity, 

temperature, turbulence intensity and turbulence length scale are presented.  Stability and 

accuracy aspects of the advection schemes common to the transport equations and the 

external and internal horizontal momentum equations are also discussed.  The salinity 

transport equation (8) is used as a generic example and the location of variables is shown 

in Figure 8.   

 

 

The salinity transport equation (8) is integrated over a cell layer to give: 
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                                 (112) 

 

where Uk, Vk, and W are defined by equations (39,40,96).  The source, sink, advection, 

and vertical diffusion portions of equation (112) are treated in separate fractional steps, as 

was done for the internal mode momentum equations in Section 5.  The three time level 

fractional step sequence is given by: 
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                                                              (113) 
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The source, sink step, equation (113), is explicit and involves no changes in cell volumes.  

When the source, sink term represents horizontal turbulent diffusion, it is evaluated at 

time level n-1, for stability (Fletcher, 1988).  The advection step, equation (114), is 

explicit and involves changes in cell volumes.  The vertical diffusion step, equation 

(115), which involves no changes in cell volumes, is fully implicit and unconditionally 

stable (Fletcher, 1988).   

 

Rearranging equation (115), the vertical diffusion step, gives: 
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              (116) 

 

For salinity, temperature, and suspended sediment concentration, the generic variable S is 

defined vertically at cell layer centers, and the diffusivity is defined at cell layer 

interfaces.  Equation (116) then represents a system of K equations and the boundary 

conditions are generally of the specified flux type.  Specified surface and bottom flux 

boundary conditions are most conveniently incorporated in the surface and bottom cell 

layer source and sink terms allowing Ab at the bottom boundary, k = 0, and the surface 

boundary, k = K+1, to be set to zero making equation (116) tridiagonal.  For turbulence 

intensity and turbulence length scale, equations (13,14), the generic variable S is defined 

vertically at cell layer interfaces and the diffusivity is defined at cell layer centers.  

Equation (116) then represents a system of K-1 equations for the variables at internal 

interfaces with the variable values at the free surface and bottom being provided as 

boundary conditions.  For the turbulence intensity and length scale, the boundary 

conditions are: 
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q0
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2 / 3 0

qK
2  B1

2/ 3 K

l0  0

lK  0  

 

where andare the bottom and surface stress vectors respectively.  Insertion of 

these boundary conditions results in equation (116) representing tridiagonal systems of K-

1 equations for the turbulence intensity and length scale. 

 

Without loss of generality, the notation used in analyzing the three time level 

advection step, equation (114), is simplified by replacing the double and single asterisk 

intermediate time level indicators by n+1 and n-1, respectively to give: 
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where the horizontal central difference operators have been expanded about the cell 

volume centroid (x,y), according to equations (46,47).  The cell face fluxes can be 

represented consistent with centered in time and space differencing as was illustrated by 

equations (48,49,97) or forward in time and backward or upwind in space as was 

illustrated by equations (50,98) for the x momentum fluxes.  For the centered in time and 

space form, equation (117) becomes: 
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                                                     (118) 

The transports in equation (118) are evaluated at the centered time level when used in the 

external and internal momentum equations, and are averaged to the centered time level 

using 
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                                                                         (119) 

 

when used in the transport equations for scalar variables.   
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To investigate the stability and accuracy of the centered in time and space scheme, the 

Fourier representation:  
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                                             (120) 

 

is introduced into equation (118) giving the characteristic polynomial 
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for a steady and spatially uniform velocity field.  The roots of  

equation (121) are: 
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and the scheme is neutrally stable if the absolute value of  is less than or equal to one.   

The most restrictive stability condition is then 
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which requires the sum of the directional Courant  Numbers to be less than or equal to 

unity.  Since the centered in time and space scheme is neutrally stable when equation 

(124) is satisfied, the numerical scheme, like the continuous equations, has no dissipation.  

Since the scheme involves three time levels, a spurious solution mode corresponding the 

second eigenvalue in equation (123) is introduced.  Using equations (69,122,123), the 

dispersion relation for the physical mode of the numerical scheme is: 
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The dispersion relation for the equivalent continuous equation is: 
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Comparison of the dispersion relations shows that errors in the phase and propagation 

speed of the centered in time and space numerical scheme are smallest for directional 

Courant numbers near unity in magnitude and for small values of the wave number 

component, grid spacing products (Fletcher, 1988).  Figure 9 shows equations (125,126) 

for a two-dimensional flow with directional Courant Numbers of 0.5.  Although the 

centered in time and space scheme is desirable because it has no dissipation, its phase 

errors at high wave numbers are undesirable.  For the transport of the horizontal 

momentum components in regions having large velocity gradients due to topographic 

variations, the centered in time and space scheme generates high wave number spatial 

oscillations which can corrupt the solution for the velocity field, (Smith and Cheng, 

1987).  The addition of horizontal diffusion to smooth the local oscillations can result in 

unrealistic damping of the surface wave propagation in other regions of the solution 

domain.  When used for the transport of positive scalar fields, particularly in regions 

having high gradients or frontal discontinuities, the dispersive character of the centered in 

time and space scheme at high wave numbers is undesirable since it can lead to high 

wave number oscillations and unrealistic negative values of strictly positive scalar field 

variables.   

 

Forward in time and backward or upwind in space representation of advective 

transport provides an alternative to the centered in time and space representation.  The 

forward in time and backward or upwind in space form of equation (117) is: 
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The transports in equation (127) are evaluated at the centered time level when used in the 

external and internal momentum equations, and are averaged to the centered time level as 

illustrated by equation (119), when used in the transport equations for scalar variables.  A 

Fourier analysis of equation (127) for a steady and spatially uniform velocity field gives 

the amplification factors or  

 

eigenvalues: 
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The stability of the scheme is determined by noting that the absolute  

 

 

 

value of ,  
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is maximum with respect to the three wave numbers when,  
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Requiring consistency with the one-dimensional results allows it to be shown that the 

maximum absolute value of  is equal to the fourth root of the maximum value with 

respect to the wave numbers of 1-.  Thus the most restrictive stability requirement for 

the absolute value of  being less than or equal to one is: 

 



 

39 

  

u(2)

mx


v(2)

my


w(2 )

H
 1

.                                                               (132) 

 

which was previously given by Smolarkiewicz (1984).  Smolarkiewicz also showed that 

when the stability condition is satisfied, the upwind scheme is positive definite and the sign 

of strictly positive scalar variables is preserved.   

 

It is noted that when the stability condition, equation (132), is satisfied, the 

amplification factor or absolute value of  will in general be less than one and the scheme 

is dissipative.  Figure 10 shows the absolute value of the amplification factor, equation 

(131), for two two-dimensional flows with directional Courant Numbers of 0.5 and 0.25.  

For the case of the directional Courant Numbers equal to 0.5, there is no dissipation of 

disturbances propagating diagonal to the grid, while dissipation otherwise increases as 

either wave number increases or the direction of propagation changes from the diagonal.  

For the lower Courant Number case, dissipation increased with increasing wave number 

magnitude.  The dissipation of high wave number or short wave length disturbances is 

desirable for controlling noise in the solution, but is undesirable when high wave number 

features such as strong vertical stratification or horizontal frontal discontinuities are 

important dynamical features sought in the solution.  The dispersion relation for the 

forward in time and upwind in space scheme is:  
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   (133) 

 

Figure 9 shows the dispersion relations for the continuous advection equation, equation 

(126), the centered in time and space scheme, equation (125) and the forward in time and 

upwind in space scheme, equation (133), for a two-dimensional flow with directional 

Courant Numbers of 0.5.  For high wave number disturbances propagating along either grid 

direction the upwind scheme, although inaccurate relative to the continuous equations, is 

more accurate than the centered in time and space scheme. 

 

The ideal advective transport scheme for scalar variables in environmental flows would 

retain the positive definite character of the forward in time and upwind in space scheme but 

control the dissipation of the scheme.  The search for an ideal advective transport scheme 

has resulted in the development of numerous high order upwind schemes, modified 

centered in space schemes, and combined schemes as evidenced in the review by Rood 
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(1986).  Many of these schemes, although successful, are difficult to apply near boundaries 

in multi-dimensional flow fields.  A high order upwind scheme developed by 

Smolarkiewicz (Smolarkiewicz, 1984, Smolarkiewicz and Clark, 1986, and Smolarkiewicz 

and Grabowski, 1990) and referred to as the multi-dimensional positive definite advective 

transport algorithm is particularly attractive because it is simple to apply near boundaries 

and has a sound and transparent theoretical basis.  Since this scheme is used for scalar 

advective transport in the environmental fluid dynamics computer code, an outline of the 

scheme is presented here for completeness. 

 

The central concept in the development of the Smolarkiewicz or MPDATA scheme is 

the determination of the sources of dissipation or damping in the forward in time and 

upwind in space scheme and the modification of the scheme to compensate or eliminate a 

significant portion of the dissipation.  The sources of dissipation are identified by a 

consistency analysis of equation (127) which involves the use of Taylor series to determine 

the actual continuous equation represented by the finite difference equation.  The resulting 

continuous equation, to second order in time and space, is: 
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      (134) 

 

The appearance of the second order diffusion terms in equation (134), which are the 

source of dissipation or damping, indicates that the  scheme is only first order accurate in 

space.   The centering of the advective field at time level n or as an average between time 

levels n-1 and n+1 in equation (127) eliminates a second order in time truncation term 

that would otherwise appear in equation (134), (Smolarkiewicz and Clark, 1986).  Thus 

the scheme is formally second order in time.  The diffusion terms in equation (134) are 

generally referred to as numerical diffusion and are represented by  
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a symmetric diffusion coefficient tensor,  
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The magnitude of the diagonal components of the tensor increase as the directional 

Courant Numbers decrease, while off diagonal components or cross wind diffusivities 

tend to increase in magnitude as the velocity vector becomes diagonal to the grid.   

 

To compensate for the diffusion terms in equation (134), the velocity field is modified 

by the vector addition of an anti-diffusive velocity field, 
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             (136) 

 

which in principle exactly cancels the diffusion terms in equation (134).  As implemented 

in the MPDATA scheme, the anti-diffusive velocity field is introduced in a fractional step 

process.  The first step involves calculating a low order solution for S at time level n+1 

using equation (127) and the actual velocity field.  Using the actual velocity field and the 

low order solution at time level n+1, the anti-diffusive velocity field is calculated using 
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equation (136).  A corrected or high order solution for S at time level n+1 is then 

calculated using  

 

equation (127) in the form: 
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Since the anti-diffusive velocity field, equation (136), does not satisfy the continuity 

equations (45,111), the anti-diffusive velocity should be set to zero on all open 

boundaries such that global continuity of the transported variable is maintained.  The 

application of equation (137) will also introduce numerical diffusion, and another anti-

diffusive velocity field can be calculated and an additional application of equation (137) 

can be made.  In principle this can continue until the numerical diffusion is insignificantly 

small, however computationally more than two anti-diffusive steps tends to be inefficient.   

 

The MPDATA scheme, althought strictly sign preserving, can suffer from dispersive 

ripples similar to other higher order advection schemes, (Smolarkiewicz and Grabowski, 

1990).  The dispersive ripples can be controlled by applying the scheme in conjunction 

with flux corrected transport methodology (Zalesak, 1979) as described by 

Smolarkiewicz and Grabowski.  When applied in the flux corrected transport form, the 

solution of equation (127) is the low order positive definite solution, while the solution of 

equation (137) is the high order solution.  The advective fluxes in the high order solution 

are however multiplied by a flux limiter, which is less than unity, such that the high order 

solution is free of dispersive ripples.  The calculation of the flux limiter is described by 

Smolarkiewicz and Grabowski (1990) and Zalesak (1979).  

 

Since the three time level fractional step scheme, equations (113-115), for the 

transport equations introduces a spurious computational solution mode, periodic insertion 
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of a two time level correction step as discussed in Section 4 is necessary.  The two time 

level fractional step scheme is given by: 
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The vertical diffusion fractional step, equation (140) is rearranged to give a tridiagonal 

system similar to equation (116).  The vertical diffusivity divided by depth in equation 

(140) can be an arithmetic or geometric average between the value at time level n and the 

value at time level n+1 from the three time level step.   

 

 

 

 

 

 

 

 

 

 

 

 

 

The advective fractional step, equation (139), is forward in time and upwind in space 

and is given by: 
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where the single and double asterisks have been replaced by n and n+1.  The flows in 

equation (141) are averages of the values at n and the values at n+1 computed from the 

three time level scheme.  The stability condition and dispersion relation for the two time 

level advection scheme are given by replacing 2 in equations (132,133) with .  The 

anti-diffusive correction to equation (141) follows directly from equations (136,137) with 

2 being replaced by . 

 

 

7.  THE ENVIRONMENTAL FLUID DYNAMICS COMPUTER CODE 

 

The computational algorithms or schemes described in Sections 3-6 for the solution 

of the momentum, continuity and transport equations (2-9) have been implemented in the 

Environmental Fluid Dynamics Computer Code using the Fortran 77 language.  The code 

is organized into preliminary processing, computational, continuous processing and post 

processing sections.  The preliminary processing section includes subroutines for data 

input, initialization, and restarting.  A separate Fortran program is used for curvilinear 

orthogonal horizontal grid generation using the weak constraint method of Ryskin and 

Leal (1983) with modifications proposed by Chikhliwala and Yortsos (1985). 

 

The computational sections of the code sequentially solve the external mode 

equations, the internal mode equations, and the transport equations for salinity, 

temperature, turbulence intensity, and turbulence length scale.  Two time level correction 

steps are periodically inserted at user specified intervals, usually every four to eight three 
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time level steps.  To reduce memory requirements, three dimensional variables are stored 

in two-dimensional arrays with the inner array index used for active water cells in the  

horizontal and the outer index used for the vertical cell layer.  Since the number of 

horizontal cells will greatly exceed the number of vertical cell layers, the inner do loops 

over the horizontal are very long relative to the outer do loops over the vertical allowing 

efficient vectorization of the code.   

 

The continuous processing section of the code includes subroutines for writing files 

for graphics and visualization of the transient behavior of vector and scalar variables and 

subroutines for inplace least squares harmonic analysis and filtering of variables at user 

specified locations.  Two specialized subroutines can be activated to write filtered or time 

averaged transport files to drive long term contaminant transport and water quality 

simulation models.  A Lagrangian trajectory subroutine allows simulation of floating and 

neutrally buoyant drifter and particle trajectories from specified time and space release 

points.  Files for restarting the simulation in progress can also be written at specified 

intervals.  The post processing section of the code produces a final restart file and various 

graphics and visualization files for mean or averaged variables.    

 

The code is designed to be an engineering tool for environmental impact assessment 

and management and a scientific tool to investigate environmental flow dynamics in real 

and hypothetical situations.  When the code is used as an engineering or scientific tool 

applied to model a prototype flow, a calibration and verification process is essential.  The 

calibration of the code to a prototype situation involves adjustment of boundary 

conditions and forcing functions and boundary roughness, equation (109), such that the 

model reasonably reproduces a known response.  For estuarine and coastal ocean flows, 

the known response would include time series of field measurements of free surface 

displacement, horizontal velocity magnitude and direction, salinity and temperature.  The 

calibrated model is then verified by simulating or predicting an entirely different 

response.  The inplace filtering and least squares harmonic analysis features of the code 

are particularly useful in extracting information for comparsion with field measurements 

in the calibration and verification processes.  After calibration and verification, the code 

or model can be used to simulate the impacts of engineering projects or extreme 

hydrologic conditions for example, or to investigate basic flow processes. 

 

 

8.  SUMMARY  
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The theoretical and computational aspects of a three-dimensional computer code for 

environmental fluid flow simulation have been presented.  The code is applicable to a 

wide range of environmenatal flows which are vertically hydrostatic and of the boundary 

layer type.  The computer code solves the vertically hydrostatic, free surface, variable 

density, turbulent-averaged equations of motion and transport equations for turbulence 

intensity and length scale, salinity and temperature in a stretched,vertical coordinate 

system, and horizontal coordinate systems which may be Cartesian or curvilinear-

orthogonal.  Equations describing the transport of suspended sediment and dynamically 

neutral conservative and nonconservative tracers are also solved.  The code uses a three 

time level, finite difference scheme with a internal-external mode splitting procedure to 

separate the internal shear or baroclinic mode from the external free surface gravity wave 

or barotropic mode.  The external mode solution is implicit, and simultaneously computes 

the two-dimensional surface elevation field by a multicolor SOR procedure.  The external 

solution is completed by the calculation of the depth integrated barotropic velocities using 

the new surface elevation field.  The implicit external solution allows large time steps 

which are constrained only by the stability criteria of the explicit advection scheme used 

for the nonlinear accelerations.  The internal solution, at the same time step as the 

external, is implicit with respect to vertical diffusion.  The internal solution of the 

momentum equations is in terms of the velocity shear, which results in the simplest and 

most accurate form of the baroclinic pressure gradients and eliminates the over 

determined character of alternate internal mode formulations.  The vertical diffusion 

coefficients for momentum, mass and temperature are determined by the second moment 

closure scheme of Mellor and Yamada, (Mellor and Yamada, 1982, Blumberg and 

Mellor, 1987, and Galperin et al, 1988) which involves the use of analytically determined 

stability functions and the solution of transport equations for the turbulence intensity and 

length scale.  Time splitting inherent in the three time level scheme is controlled by 

periodic insertion of a two time level step.  The code include various options for 

advective transport, including the centered in time and space scheme, the forward in time 

and upwind in space scheme, and Smolarkiewicz's multidimensional positive definite 

advective transport algorithm, (Smolarkiewicz and Clark, 1986, Smolarkiewicz and 

Grabowski, 1990), which is used in the scalar transport equations.  The code is written in 

standard Fortran 77, and is designed to economize mass storage by storing only active 

water cell variables in memory.  Particular attention has also been given to minimizing 

logical operations, and the code is highly vectorizable.  The code was originally 
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developed on a DEC VAX computer and has been ported to Sun workstations, Macintosh 

and 386 PC's, and Cray and Convex supercomputers.   
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Figure 1.  The stretched vertical coordinate system 
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Figure 2.  Free surface displacement centered horizontal grid. 
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Figure 3.  U centered grid in the horizontal (x,y) plane. 

 

 
 

(a) Continuous equations 
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(b) Two time level trapezoidal difference equations 

 
 

(c) Three time level leap-frog trapezoidal difference equations 

 

Figure 4.  Dispersion relations: , vertical axis, versus kxmx and kymy, horizontal axes, 

for wave propagation schemes. 

 
 

(a) Continuous Equations 
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(b) Two time level trapezoidal difference equations 

 
 

(c) Three time level leap-frog trapezoidal difference equations 

 

Figure 5.  Magnitude of phase velocity, |c|/sqrt(gh), vertical axis, as a function of 

horizontal wave number, kxmx and kymy, horizontal axes. 

 
 

(a) Continuous Equations 

  
 

(b) Two time level trapezoidal difference equations 
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(c) Three time level leap-frog trapezoidal difference equations 

 

Figure 6.  Magnitude of group velocity, |G|/sqrt(gh), vertical axis, as a function of 

horizontal wave number, kxmx and kymy, horizontal axes. 
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Figure 7.  U centered grid in the vertical (x,z) plane. 
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Figure 8.  S centered grid in the vertical (x,z) plane. 

 

 

(a)  Continuous equation (values less than -1.5 shown as -1.5) 

 

 

(b)  Three time level centered in time and space 



 

57 

 

 

(c)  Three time level forward in time and upwind in space 

 

Figure 9.  Dispersion relations: , vertical axis, versus kxmx and kymy, horizontal axes, 

for advection scheme.  Courant Numbers = 0.5.  

 

 

 

(a)  Horizontal Directional Courant Numbers equal to 0.5 
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(a)  Horizontal Directional Courant Numbers equal to 0.25 

 

Figure 10.  Magnitude of amplification factor, vertical axis, versus kxmx and kymy, 

horizontal axes, for upwind advection scheme 
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as of July 8, 1993 

 

The last line of equation 24, page 14 should be: 

 

my H
2
 x  kk

k1

K










  m( xz )K  m( xz )0  Q u  

 

(24) 

 

The last line of equation 25, page 14 should be: 

 

mx H
2
 y  kk

k1

K










  m( yz )K  m( yz )0  Q v  

 

(25) 

 

The fourth line of equation 30, page 15 should be: 
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 myHk1, k

1
g(bk 1  bk )(xh  zkx H)  0.5myH

2
 k1, k

1
g(k1 xbk1  k xbk)  (30) 

 

The fourth line of equation 31, page 16 should be: 

 

 mxHk1, k

1
g(bk1  bk )( yh  zky H)  0.5mx H

2
k1, k

1
g(k1 ybk 1  k ybk ) (31) 

 

The first line of equation 34, page 17 should be: 

 

tU  mx

1
myHgx mx

1
myHx ps mx

1
myHg b xh B xH  Hx  (34) 

 

The first line of equation 35, page 17 should be: 

 

tV  mxmy

1
Hgy mxmy

1
Hy ps mxmy

1
Hg b yh  B yH  Hy  (35) 

 

The second line of equation 43, page 19 should be: 

 

2 (mx

1myH)
u g b u x

uh  B u x

u H H u x

u 

2 (mx

1
)

u
k  x

u
(Ukuk )  y

u
(Vkuk ) 

k 1

K


 

 

(43) 

 

The second line of equation 44, page 19 should be: 

 

2 (mxmy

1H)vg b v y

vh B vy

vH H vy

v 

2 (my

1
)

v
k  x

v
(Ukvk) y

v
(Vkvk ) 

k1

K


 

 

(44) 

 

The fouth line of equation 94, page 31 should be: 

 

2 (mx

1
myH)

u
g (bk1  bk)

u
x

u
(h  zk H) 0.5H

u
x

u
(k1bk1  kbk )  (94) 

 

The fourth line of equation 95, page 31 should be: 

 

2 (mxmy

1
H)

v
g (bk1  bk)

v
y

v
(h zkH)  0.5H

v
y

v
(k1bk1  kbk )  (95) 

 

Equation 124, page 39 should be 
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(124) 

 

The two lines of text following equation 124 should be replaced by: 
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which requires the vector magnitude of the directional Courant Numbers to be less than 

or equal to unity.  Since the centered in time and space---. 

 

Equation 132, page 42 should be: 
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