WETLAND DETERMINATION DATA FORM - Alaska Region

Project/Site: Susitna-Watana Hydroelectric Project	Borough/City:	Matanuska-Susitna Borough Sampling	Date: 08-Jul-13
Applicant/Owner: Alaska Energy Authority		Sampling Point:	SW13_T130_03
Investigator(s): JGK	Landform (hill	side, terrace, hummocks etc.): Shoulder	slope
Local relief (concave, convex, none): hummocky	Slope: 17.6	% / 10.0 ° Elevation: 1056	
Subregion : Interior Alaska Mountains	at.: 63.036976814	Long.: -148.140089393	Datum: WGS84
Soil Map Unit Name:		NWI classification:	PSS1B
	year? Yes cantly disturbed? Illy problematic?	 No (If no, explain in Remarks.) Are "Normal Circumstances" present? (If needed, explain any answers in Rem 	Yes 🔍 No 🔿
SUMMARY OF FINDINGS - Attach site map showing	sampling point	locations, transects, important featu	ures, etc.
\sim			

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes ● Yes ● Yes ●	Is the Sampled Area within a Wetland?	Yes 🖲 No 🔿
Remarks: DUNN SITE 1463 SOIL 1465			

VEGETATION - Use scientific names of plants. List all species in the plot.

			Absolute	Dominant	Indicator	Dominance Test worksheet:
Tre	e Stratum		% Cover	Species?	Status	Number of Dominant Species
1.			0			That are OBL, FACW, or FAC: (A)
2.			0			Total Number of Dominant
3.			0			Species Across All Strata: (B)
3. 4.						Percent of dominant Species That Are OBL, FACW, or FAC: 100.0% (A/B)
			0			Inat Ale OBL, FACW, of FAC. IUU.0% (A/B)
5.			0			Prevalence Index worksheet:
		Cover:				Total % Cover of: Multiply by:
Sap	ling/Shrub Stratum 50% of Total Cove	er:	020%	of Total Cover:	0	OBL Species x 1 =
1.	Betula nana		35	\checkmark	FAC	FACW Species <u>24.1</u> x 2 = <u>48.20</u>
2.	Vaccinium uliginosum		15	\checkmark	FAC	FAC Species <u>91</u> x 3 = <u>273</u>
3.	Vaccinium vitis-idaea		5		FAC	FACU Species x 4 =
4.	Ledum decumbens		7		FACW	UPL Species 5 x 5 = 25
5.	Empetrum nigrum		5		FAC	Column Totals: <u>120.1</u> (A) <u>346.2</u> (B)
6.	Salix pulchra		15	\checkmark	FACW	$\frac{120.1}{(A)}$
7.	Salix reticulata				FAC	Prevalence Index = B/A = 2.883
8.						Hydrophytic Vegetation Indicators:
			0			✓ Dominance Test is > 50%
			0			✓ Prevalence Index is ≤3.0
		Cover:	87			\square Morphological Adaptations ¹ (Provide supporting data in
Her	b Stratum 50% of Total Cov	er:4	3.5 20%	of Total Cover:	17.4	Remarks or on a separate sheet)
1.	Carex bigelowii		20	\checkmark	FAC	Problematic Hydrophytic Vegetation ¹ (Explain)
2.	Poa glauca		h		UPL	¹ Indicators of hydric soil and wetland hydrology must
3.	Artemisia furcata		3		UPL	be present, unless disturbed or problematic.
4.	Sedum rosea		5		FAC	- Not size (radius, er langth y width)
5.	Equisetum arvense		1		FAC	Plot size (radius, or length x width) <u>10m</u>
6.	Petasites frigidus		2		FACW	% Cover of Wetland Bryophytes <u>15</u> (Where applicable)
7.	Pedicularis labradorica		0.1		FACW	% Bare Ground _7
8.						Total Cover of Bryophytes _55
			0			
			0			Hydrophytic
		Cover:	33.1			Vegetation
	50% of Total Cove			of Total Cover:	6.62	Present? Yes No
Rem	arks: Lichen 10 Tr Carex sp., trace Stellaria sp	o. (coll)	_			

Profile Descriptio		1atrix				lox Featu	res	,		
(inches)	Color (moi	st)	%	Color (n	noist)	%	Type ¹	Loc 2	Texture	Remarks
0-2									Fibric Organics	
2-14	2.5Y	4/1	60	5YR	4/4	30	C	PL	Sandy Silt Clay Loam	10% PL 10 YR 4/2
	·									
					-				· .	
¹ Type: C=Cone	centration. D=	Depletion.	RM=Reduc	ed Matrix	² Location	: PL=Pore	e Lining. RC	=Root Cha	annel. M=Matrix	-
Hydric Soil In	dicators:			Indicat	ors for Pro	oblematio	: Hydric So	oils: ³		
Histosol or	Histel (A1)				ka Color Ch		4		Alaska Gleyed Without H	lue 5Y or Redder
Histic Epipe	. ,			🗌 Alas	ka Alpine sv	wales (TAS	5)		Underlying Layer	
Hydrogen S				🖌 Alas	ka Redox W	Vith 2.5Y F	lue		Other (Explain in Remar	ks)
	Surface (A12)									
Alaska Gley	. ,								mary indicator of wetland I	hydrology,
Alaska Red				and an	appropriate	e landscap	e position r	nust be pr	esent	
	ed Pores (A15	5)		⁴ Give of	details of co	olor change	e in Remark	S		
Restrictive Layer										
Type:	i (ii presenc).								Hydric Soil Present	:? Yes 🖲 No 🔿
Depth (inche	ec).								Hyunc Son Present	
Remarks:										
Soil too thixotro	pine to alg be;									
HYDROLOG	GY									
HYDROLO(Wetland Hydro	-	tors:							_Secondary Indi	icators (two or more are required)
	ology Indicat)							icators (two or more are required) ined Leaves (B9)
Wetland Hydro	ology Indicat)	In	undation Vi	sible on A	erial Imager	γ (B7)	Water Sta	
Wetland Hydro	ology Indicat ors (any one is ater (A1))				erial Imager		Water Sta	ined Leaves (B9)
Wetland Hydro Primary Indicat	ology Indicat cors (any one is ater (A1) r Table (A2))	🗌 Sp		etated Cor	-		Water Sta	ined Leaves (B9) Patterns (B10)
Wetland Hydro Primary Indicat Surface Water High Water	ology Indicat cors (any one is ater (A1) r Table (A2) (A3))	Sp Ma	arsely Vege	etated Cor 6 (B15)	icave Surfac		Water Sta	ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4)
Wetland Hydro Primary Indicat Surface Wa High Wates Saturation Water Mar	ology Indicat cors (any one is ater (A1) r Table (A2) (A3))	☐ Sp ☐ Ma ☐ Hy	arsely Vege arl Deposits	etated Cor 5 (B15) Ifide Odor	ncave Surfac		Water Sta Drainage I Oxidized F Presence o Salt Depos	ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) sits (C5) r Stressed Plants (D1)
Wetland Hydro Primary Indicat Surface Wa High Wate Saturation Water Mar	ology Indicat cors (any one is ater (A1) r Table (A2) (A3) ks (B1) Deposits (B2))	Sp Ma Hy Dr	oarsely Vege arl Deposits /drogen Sul	etated Cor 5 (B15) Ifide Odor Vater Table	(C1) e (C2)		Water Sta Drainage I Oxidized F Presence o Salt Depos	ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) sits (C5)
Wetland Hydrd Primary Indicat Surface Wa ✓ High Water ✓ Saturation Water Mar Sediment I Drift Depos Algal Mat co	ology Indicat ater (A1) r Table (A2) (A3) ks (B1) Deposits (B2) sits (B3) pr Crust (B4))	Sp Ma Hy Dr	oarsely Vege arl Deposits vdrogen Sul vy-Season W	etated Cor 5 (B15) Ifide Odor Vater Table	ncave Surfac (C1) e (C2)		Water Sta	ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) sits (C5) r Stressed Plants (D1)
Wetland Hydrd Primary Indicat Surface Wa ✓ High Water ✓ Saturation Water Mari Sediment I Drift Deposit	ology Indicat ater (A1) r Table (A2) (A3) ks (B1) Deposits (B2) sits (B3) pr Crust (B4))	Sp Ma Hy Dr	oarsely Vege arl Deposits vdrogen Sul vy-Season W	etated Cor 5 (B15) Ifide Odor Vater Table	ncave Surfac (C1) e (C2)		Water Stal	ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) sits (C5) r Stressed Plants (D1) nic Position (D2) quitard (D3) graphic Relief (D4)
Wetland Hydr Primary Indicat Surface Wa ✓ High Water ✓ Saturation Water Mar Sediment II Drift Depos Algal Mat c Iron Depos	ology Indicat ater (A1) r Table (A2) (A3) ks (B1) Deposits (B2) sits (B3) pr Crust (B4))	Sp Ma Hy Dr	oarsely Vege arl Deposits vdrogen Sul vy-Season W	etated Cor 5 (B15) Ifide Odor Vater Table	ncave Surfac (C1) e (C2)		Water Sta Drainage I Oxidized F Presence o Salt Depos Stunted ou Geomorph Shallow Ad	ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) sits (C5) r Stressed Plants (D1) nic Position (D2) quitard (D3) graphic Relief (D4)
Wetland Hydr Primary Indicat Surface Wa ✓ High Water ✓ Saturation Water Mar Sediment I Drift Depos Algal Mat c Iron Depos Surface So	ology Indicat cors (any one is ater (A1) r Table (A2) (A3) ks (B1) Deposits (B2) sits (B3) pr Crust (B4) sits (B5) bil Cracks (B6) tions:	s sufficient		Sp Ma Hy Dr Ot	aarsely Vege arl Deposits vdrogen Sul vy-Season W ther (Explain	etated Cor ; (B15) Ifide Odor Vater Tabl n in Rema	ncave Surfac (C1) e (C2)		Water Stal	ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) sits (C5) r Stressed Plants (D1) nic Position (D2) quitard (D3) graphic Relief (D4)
Wetland Hydr Primary Indicat Surface Wa ✓ High Water ✓ Saturation Water Mar Sediment I Drift Depos Algal Mat c Iron Depos Surface So	ology Indicat cors (any one is ater (A1) r Table (A2) (A3) ks (B1) Deposits (B2) sits (B3) pr Crust (B4) sits (B5) bil Cracks (B6) tions:	s sufficient	• No •	Sp Ma Hy Dr Ot	oarsely Vege arl Deposits vdrogen Sul vy-Season W	etated Cor ; (B15) Ifide Odor Vater Tabl n in Rema	ncave Surfac (C1) e (C2)	e (B8)	Water Sta Drainage I Oxidized F Presence o Salt Depos Stunted ou Geomorph Shallow Ac Microtopo ▼FAC-neutro	ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) sits (C5) r Stressed Plants (D1) nic Position (D2) quitard (D3) graphic Relief (D4) al Test (D5)
Wetland Hydr Primary Indicat Surface Wa ✓ High Water ✓ Saturation Water Mar Sediment I Drift Depos Algal Mat c Iron Depos Surface So	ology Indicat cors (any one is ater (A1) r Table (A2) (A3) ks (B1) Deposits (B2) sits (B3) or Crust (B4) sits (B5) bil Cracks (B6) tions: Present?	s sufficient		Sp Ma Hy Dr Ot	aarsely Vege arl Deposits vdrogen Sul vy-Season W ther (Explain	etated Cori ; (B15) fide Odor Vater Tabl n in Rema s):	ncave Surfac (C1) e (C2)	e (B8)	Water Stal	ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) sits (C5) r Stressed Plants (D1) nic Position (D2) quitard (D3) graphic Relief (D4) al Test (D5)
Primary Indicat Surface Wa High Water Saturation Water Mar Sediment I Drift Depos Algal Mat c Iron Depos Surface So Field Observat	ology Indicat ater (A1) r Table (A2) (A3) ks (B1) Deposits (B2) sits (B3) or Crust (B4) sits (B5) bil Cracks (B6) tions: Present? resent?	s sufficient Yes Yes	• No •	Sp Ma Hy Dr Ot Ot	earsely Vege arl Deposits vdrogen Sul y-Season V ther (Explain epth (inches	etated Cor (B15) (fide Odor Vater Tablo n in Rema s): s): 10	ncave Surfac (C1) e (C2)	e (B8)	Water Sta Drainage I Oxidized F Presence o Salt Depos Stunted ou Geomorph Shallow Ac Microtopo ▼FAC-neutro	ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) sits (C5) r Stressed Plants (D1) nic Position (D2) quitard (D3) graphic Relief (D4) al Test (D5)
Wetland Hydr Primary Indicat Surface Wa ✓ High Water ✓ Saturation Water Mar Sediment I Drift Depos Algal Mat c Surface So Field Observat Surface Water Water Table Pr Saturation Press	ology Indicat arer (A1) r Table (A2) (A3) ks (B1) Deposits (B2) sits (B3) or Crust (B4) sits (B5) bil Cracks (B6) tions: Present? resent? sent? lary fringe)	s sufficient Yes ○ Yes ● Yes ●	0 No ● No ○ No ○	Sp Ma Hy Dr Ot Ot De De	arsely Vege arl Deposits /drogen Sul y-Season W .her (Explain epth (inches epth (inches	etated Cor i (B15) fide Odor Vater Tabl n in Rema s): s): s): 10 s): 4	icave Surfac (C1) e (C2) rks)	Wetla	Water Sta Drainage I Oxidized F Presence o Salt Depos Stunted ou Geomorph Shallow Ac Microtopo ▼FAC-neutro	ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) sits (C5) r Stressed Plants (D1) nic Position (D2) quitard (D3) graphic Relief (D4) al Test (D5)
Wetland Hydr Primary Indicat Surface Wa V High Water Saturation Water Mar Sediment I Drift Depos Algal Mat c Iron Depos Surface So Field Observat Surface Water Water Table Pr Saturation Pres (includes capill Describe Record	ology Indicat arer (A1) r Table (A2) (A3) ks (B1) Deposits (B2) sits (B3) or Crust (B4) sits (B5) bil Cracks (B6) tions: Present? resent? sent? lary fringe)	s sufficient Yes ○ Yes ● Yes ●	0 No ● No ○ No ○	Sp Ma Hy Dr Ot Ot De De	arsely Vege arl Deposits /drogen Sul y-Season W .her (Explain epth (inches epth (inches	etated Cor i (B15) fide Odor Vater Tabl n in Rema s): s): s): 10 s): 4	icave Surfac (C1) e (C2) rks)	Wetla	Water Sta Drainage I Oxidized F Presence o Salt Depos Stunted ou Geomorph Shallow Ac Microtopo ▼FAC-neutro	ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) sits (C5) r Stressed Plants (D1) nic Position (D2) quitard (D3) graphic Relief (D4) al Test (D5)
Wetland Hydr Primary Indicat Surface Wa ✓ High Water ✓ Saturation Water Mar Sediment I Drift Depos Algal Mat c Iron Depos Surface So Field Observat Surface Water Water Table Pr Saturation Pres (includes capill	ology Indicat arer (A1) r Table (A2) (A3) ks (B1) Deposits (B2) sits (B3) or Crust (B4) sits (B5) bil Cracks (B6) tions: Present? resent? sent? lary fringe)	s sufficient Yes ○ Yes ● Yes ●	0 No ● No ○ No ○	Sp Ma Hy Dr Ot Ot De De	arsely Vege arl Deposits /drogen Sul y-Season W .her (Explain epth (inches epth (inches	etated Cor i (B15) fide Odor Vater Tabl n in Rema s): s): s): 10 s): 4	icave Surfac (C1) e (C2) rks)	Wetla	Water Sta Drainage I Oxidized F Presence o Salt Depos Stunted ou Geomorph Shallow Ac Microtopo ▼FAC-neutro	ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) sits (C5) r Stressed Plants (D1) nic Position (D2) quitard (D3) graphic Relief (D4) al Test (D5)
Wetland Hydr Primary Indicat Surface Wa V High Water Saturation Water Mar Sediment I Drift Depos Algal Mat c Iron Depos Surface So Field Observat Surface Water Water Table Pr Saturation Pres (includes capill Describe Record	ology Indicat arer (A1) r Table (A2) (A3) ks (B1) Deposits (B2) sits (B3) or Crust (B4) sits (B5) bil Cracks (B6) tions: Present? resent? sent? lary fringe)	s sufficient Yes ○ Yes ● Yes ●	0 No ● No ○ No ○	Sp Ma Hy Dr Ot Ot De De	arsely Vege arl Deposits /drogen Sul y-Season W .her (Explain epth (inches epth (inches	etated Cor i (B15) fide Odor Vater Tabl n in Rema s): s): s): 10 s): 4	icave Surfac (C1) e (C2) rks)	Wetla	Water Sta Drainage I Oxidized F Presence o Salt Depos Stunted ou Geomorph Shallow Ac Microtopo ▼FAC-neutro	ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) sits (C5) r Stressed Plants (D1) nic Position (D2) quitard (D3) graphic Relief (D4) al Test (D5)
Wetland Hydr Primary Indicat Surface Wa Surface Wa Saturation Water Mar Sediment I Drift Depos Algal Mat c Iron Depos Surface Soo Field Observat Surface Water Water Table Pr Saturation Pres (includes capill Describe Record	ology Indicat arer (A1) r Table (A2) (A3) ks (B1) Deposits (B2) sits (B3) or Crust (B4) sits (B5) bil Cracks (B6) tions: Present? resent? sent? lary fringe)	s sufficient Yes ○ Yes ● Yes ●	0 No ● No ○ No ○	Sp Ma Hy Dr Ot Ot De De	arsely Vege arl Deposits /drogen Sul y-Season W .her (Explain epth (inches epth (inches	etated Cor i (B15) fide Odor Vater Tabl n in Rema s): s): s): 10 s): 4	icave Surfac (C1) e (C2) rks)	Wetla	Water Sta Drainage I Oxidized F Presence o Salt Depos Stunted ou Geomorph Shallow Ac Microtopo ▼FAC-neutro	ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) sits (C5) r Stressed Plants (D1) nic Position (D2) quitard (D3) graphic Relief (D4) al Test (D5)
Wetland Hydr Primary Indicat Surface Wa Surface Wa Saturation Water Mar Sediment I Drift Depos Algal Mat c Iron Depos Surface Soo Field Observat Surface Water Water Table Pr Saturation Pres (includes capill Describe Record	ology Indicat arer (A1) r Table (A2) (A3) ks (B1) Deposits (B2) sits (B3) or Crust (B4) sits (B5) bil Cracks (B6) tions: Present? resent? sent? lary fringe)	s sufficient Yes ○ Yes ● Yes ●	0 No ● No ○ No ○	Sp Ma Hy Dr Ot Ot De De	arsely Vege arl Deposits /drogen Sul y-Season W .her (Explain epth (inches epth (inches	etated Cor i (B15) fide Odor Vater Tabl n in Rema s): s): s): 10 s): 4	icave Surfac (C1) e (C2) rks)	Wetla	Water Sta Drainage I Oxidized F Presence o Salt Depos Stunted ou Geomorph Shallow Ac Microtopo ▼FAC-neutro	ined Leaves (B9) Patterns (B10) Rhizospheres along Living Roots (C3) of Reduced Iron (C4) sits (C5) r Stressed Plants (D1) nic Position (D2) quitard (D3) graphic Relief (D4) al Test (D5)